©QVS

Software

QVS Distributed Data
Services/Controller
Services for Windows

Programming Guide

Version 3

First Edition (March 2001)

This edition applies to Version 3 of the QVS Distributed Data Services/Controller Services for Windows, and to all
subsequent releases and modifications until otherwise indicated in new editions.

First Edition (November 2004)
Updated March 17, 2006

This edition applies t¥ersion 3of the QVS 469@VS Distributed Data Services/ Controller
Services Featur@®DS/CSH for Windows @erating systems and to all subsequent releases and
modifications until otherwise indicated in new editions.

Download publications fromww.qvssoftware.com. Email comments to
webmaster@gvssoftware.com or address your comments to:

QVS Software, Inc.

Cl/o Publications

5711 Six Forks Rd. Suite 300
Raleigh, NC 27609

USA

When you send information to QVS, you grant QVS a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright QVS Software, Inc. 2004. All rights reserved.

http://www.qvssoftware.com/
mailto:webmaster@qvssoftware.com

Table of Contents

TabIe Of CONIENLS......ueiiiie e as 3

[1= = o] = ST PP 8
How This Manual IS Organize............cooooiiiiiieeen e eeees e e e e e e e e eeeenn 8
SYNEAX CONVENTIONS......cciiiiiieeeiiieiiiimmmr et e e e e e emensaa s s e e e e e e e eeaeeeeesannneaaaaeeeaaeeeees 8
ReqUITEA ParamMELEELS......ceiiiiiiiiiiie et eeeea e 8
DefaUlt Par@meterS.........cuiiiiiiiiiii e 9
OpPtioNAl PArameterS........cooiiiiiiiiiiiee e e e e e aeer e 9
T oL T LT Lo T o= U= Ug 4] (=Y &S 10
Related PUDIICALIONS.coooi ettt 10
Chapter 1. SYSEM OVEIVIEW.........uuuuiiuiiiiis s ceeeeeieeiniess s s e e e e eeeeessmamsasaaaaaaaeseaaseeeesssssinnneeees 11
N[Yo [P 11

NN 00 = 1 1 PP PPPPRRRR 12
SYSTEIM ID. ettt s 12
Logical Names and ROIE NaAMES......cccoooeiiiiiiiieieeee e 13
Reserved ROIE NAMES......cooiiiiieeeeiii et e e e e e e e e e s emnnn s 13
BroadCast DOMAINS........cooiiiiiiiiiiitirees s eeer bbb e e e e e e e e e e e e e s smmreeaaeeaaaeeens 14
Distribution DOmaiNs and ROIES......ccoiiiiiiii e 14
File Names and QUEUE NAIMES......cooeiiiiiiiiiieeeieeeee et eee et e e e sseeseeeeeebaa e e e e e eertaa e ens 15
COMPONENTS. ...ttt s e e e e e e e e enmn s e e et e e e e e e e e e et eeesssannneeeeeeeeeeeeenennnnnnnnas 16
FIlE DISTIDULION.ttt ettt e e e et e e e e e e e e e e e e e e e e e s s s s sammne e e e e e e e e s e e annnes 18
(D] G VL@ I T 1 (1 (o] o 1 18
Chapter 2. IntrodCtion t0 the APL.........ooorii e e e e e e 19
C Language Header FilES..........u e 19
Building Your APPHCALION............ccooiiiiiiiieeee e enennes 19
Optimizing Application PerformManCe............cuiviiiiiiiiiieei e 20
MeMOry CONSIAEIALIONS.........cviiiiiiiiiii et e e e e e e e e e e seeeie e e e e e e e e e e e e e e e e eeeeresannneeeas 20
Multiple Threads and PrOCESSES.........ccooiiuiiiiiirrer et eeenssbb e eeeeeeeeeas 21
Designing Your APPlICALION...........uuuuuiiiieis e et eeeeere s e e e e e e e e e e e e e e eeeeannnas 21
Accessing the Prime Copy Of @ File........ccciiiiiiiiiieeeii s 21
ATQUMENT FOIMIBB ...t rrr e e e e e e e e e e et e e eann s 22

[o G 0T [PPUUPPPRR 23
Initializing Your APPHCAtION............cooiiiiiiiieeeee e e e e 23
0 K] | 1 (PP PTPTTP PR SSPPTPORR 23
[0 RSy [11 w2 O 24
Chapter 3. Installation and Configuration.............coooeiiiiiiicci e 26
[0 1@ T 1T VA O o] 1] o | TSRS 26
Chapter 4. File SEIVICES......ccooi it e e e bbbt e e e e e aeeree e e s e eee s 27
Services and OPEIatiON...........uiiiiiiiiii i ceeeii e e e e e et e e e e et e e e e e e ——————— 29
Operating System and File System ReStrCUONS.........ccviiiiiiiiiieeniiieeeeeeeeeeeeeee e 30

[0 S OF L =T (=] 1 (PP 31
FASDEIETEFIIE(). .. oo eee ettt e ettt ettt e e e e e e e e e e e e s st e e e e e e e e e e e e e e e 32
[0 LY 1Y 1 1 =T PSR 33

FOASGEFIEALTDULES (). . vvrreeeeiiiiiie e 34

FASGEFIENAMES().....ceeeeiieeeeieiitet et e e e e e erens e e e e e e e e e e e e e e e e e aneneaeaaaeaaeeaees 36

FASQUErYFIleSYStemMINTO()......coeeee et eeee e e e eeeees 39
FASREMOVEDII().....eeieeeeeeiiiiiiiiiis ettt s s e e e e e e e e e s smesssssseeeeeeeeseesssssnssssnnneeesseeeseeessnnes 40
FASRENAMEFIIE()......ciieeeeiiiiiiiiii ettt errnrs s e e e e e e e e e e eeeeeensrnnneeesseeeeeeessenes B2
FASRESIICIFIE()....ceeeeeeeeeeee et e e e errers e e e e e e e e e e e e e e eeesnsrnnneeeseeeeeenensenes DO
FASSEetFIeArIDULES()......co e e e e e e enennn e DD
0 RS oL 1S] £ od {1 =T (U PPURR 47
KEYEAFIIE SEIVICES.ttt ettt eeee ettt et e e e e e e e e e e e e s amme e e e e e e e e 48
Capabilities and RESIICHONS.uuuiiiiiee e ceeeciie e eeee e e e e e e e e e e e eeeeaaenannaaed 49
FASCIOSEKEYERUFIIE(). ... i eeeeeeiiiriiiiiie sttt e e e e e e e e e e e e e e e e annneeeeeeeeees 49
[0 S O == 1]) V=0 | =T () 52
FAsDeleteKeyYEURECOIT() ... it ieeeeeeeeeieeeeeieeee ettt e e et e e e e s eemrrnnnes 55
[0 R @ T=T | V<o |] =T (PSP 57
FOSREadKEYEURECOIA()......ccouiiiiiiiiiieeieee bbbttt eeer e e e e e e e e e e e e e e e e e s ammmeeeeeeens 59
FdsReleaseKeyedRECOI()........ovvveiuriuriiiiimmr et era e e e e e e e e e e e e ameeaaas 61
FASWIHtEKEYEAREI (). ... tvvverrieieiiiieii ettt e e 64
SequENLiAl FilE SEIVICES.......uuuuiiiiiii e ceee s e e e e aeeer s e e e e e e e e e e e e e e e eeraersnnneaeeeee) 66
FOSCIOSESEORIEL) ...ttt e e nnee e 67
FASFIMINEXtSEQRECOIT(). .. eeererrrriiiiiiiee e e e e ceeere e e e e e e e e e e e e eeeer e e e e e e e e e e e e e e e e e eeeeeb b nnneeees 68
[0 K@ o1 g N1 =T o | 1 L= (PP PP UTPPPPPPP 70
[0 RS T To AT =To | =T oo o | SRS 72
FOSREtUrNSEQFIIEPOS() .. eeeeieieeeeee i eeeeeee e 74
FASSEEKSEOFIEPOS().....ceeeeeiiiiiieie it i eerre e e e e e e e e e e e e e e e e s aeeeeeaaaaaaaes 76
FASWIHIESEQRECOIA(). ... ettt eeeeiiit et e e e e e smnne e e e d O
BIiNAry FIl& SEIVICES.coii it eeer s 80
FOSCIOSEBINFIE() ittt ettt err e e e e e e e e e e mn e e 80
FASFIUSNBINFIIE(). vttt ettt et 81
FASOPENBINFIIE(). ..ttt neee e 83
FASQUEIYBINFIESIZE()...urvuereiiiiiie e e e e ettt eeee e e e e e e e e e eeeeees 85
FOSSEEKBINFIHEPOS(). . teeeeeeeeteeiieeee ettt eeenaeee e 89
FASSEtBINFIELOCKS()....cceeeeeeiiieeeeee e e e e e e e e emee e e e e as 91
FASSEtBINFIESIZE(). ...ttt ieee ettt e e e e e e e e e e e s st e e e e e e e e e 94
FASWIEBINFIE()..vvvveiee e 95
Chapter 5. NOGE CONIIOL.......uuuiiiiiiiiiiii ittt esr e e e e nnne e 98
NN o0 = I PP PPPRPURRPRRR 98
FOSGEINOUES(). .t eeeeeeeeeeieee e ettt eeea bbbt s s e e e e e 99
Obtaining the Status of the Acting Primary Distributor.............cccoooiiiiieeeiiiicceeeee. 101
Chapter 6. Data DiStrDULION.uuiiiiiiiiii e 103
LTI I o= TSP PUPPPPRN 104
DISHIDULION DIFECIOMY.....iiiiiiiiiiiei ettt ettt e e e e e e rer et e e e e e e e e e e e e e e e e e nnee e e e e 105
DT eToi () VLY F= TaT=To =T 0 0 =T o PSP 106
LOGICAI NAIMES......ceiiiiiiiiiiiee e eeee bbb 106
DIStIDULION FrEOQUENCY i e ettt e e e et e e e e e et nmmeeesaaas 107
=T oo g o3| =1 1o o ISP PPSUR 108
Data Integrity and AvailBilityoouumeiiii e 109

UserInitiated Activation of the Primary Distributor................uvviiiiccceeeeiin, 110

AULOMALIC SWILCROVETcoiiiiiieeee et e e e e e e e e e enee s 112
S 0T g = L[= PP 113
Number of DIStHDUBA FIlES..........ouuiiiiiiiis e e eeeeeees 114
(02 Y=o I 1 =PSRRI 114
TS Tod 1 o] PP 114
FASACHVALEASPIIMIY() e i e e e eeeeee et mmme ettt ee e e e e e e e e e e e e e amaneaaeas 115
FASAAADOMAINNOUE(): ... et eeeeeeeee e et ieees e e e e et ee et mmme e e e e e eeeeeeeeebnnn e smmeesennees 116
FAsCreateBcastDOM@IN() coiiiee e e e eee e ceeei et meme e e e e e e ammrnne 117
FASCRAESYNCID(). .. e i i eeeeeeeeiiiitit et e e e e e e erens s e e e e e e e e e e e e e e eeeestnnneaeeaeaeeeees 119
FASDEaCtVAtEP TIMAIY().....ceveeeeeeeiiiieii i s s e e e e e e emmnasa e s e e e e e e e e e e e e eeeanenseeeeas 121
FASDeleteBCasStDOMEAIN().. ... eiieeeeeeeeeeeeiiieees e et meee e e e e e e eeeeeaeeeen s smmeeees 122
FAsSDeleteDOMAaINNOGE()eieeeeeeeeee et ieeei e e et meme e e e e e e e e e e emmrnnes 123
FOSGEIDOMAINLIST()..vvrteeeeeeeeeieeeeee et eeeneeeeee e 125
FASGEtDOMAINNOUES() .. evvueeiiiiiieee e eeeeiee e e e e e e e e e e ettt eeae e e e e e e e e e eeeeaaasaaa s smmmreennnes 126
FASQUErYBaCKUPSTATE()......co ittt ieee bttt e e e e e e e e e e e e e e s s 128
[0 RS @ TU =T Y 1S] o111 o] 1/ TSP 129
FASSEtDISIIDULION(). ...ttt e e e e e e e e e 132
FASSEtUPDISTMONITON() . ..vrvreeeiiieiie e e e e e e e s eeeeie e e s e e e e e e e e e e e e e ettt eene e e e e e e e e eeeaasaassaa s smmmrennnees 136
FASSEtUPSYNCIDNOTITY (). eeeeeeeieeeeeee e eeenanee 138
Chapter 7. NAmME SEIVICES......uiiii it i e e e e eee et eeeeii ettt e ettt enae e e e e e e e e eeeaet b smmmeennnees 141
Creating LOgICal NAMIES... ...ttt e e e e e rmmne e 142
LOQICAFNGMES FilE... .o e e e e e e e e e e aeenr e e e e e eas 143
Changing LOgICal NAMES.........coiiiiiiiiiiii et eeenanees 143
Deleting LogiCal NAMES........cccoiiiiiiieiiiieeee e e e e e e e e e e aeeee s 144
Logical Name RESOIULION..........c.uuiiiiiiiiiiiieeei et e e e mmne s 144
Creating ROE NAMES.......uuuuiiiiii e ceeeic et eene e e e e e e e e e e et smmmreeennnnes 144
ROlE NAME RESOIULION.ot eeee e smmeesennnes 145
Verifying ROIE NAMES.........ouuiiiiiiei e eeeer e e e e e e e e nnneeeeeees 145
FOSCNANGELOGICNIMI(). ...ttt ettt e et e e e e e e e e e e e e nnee e 145
FASCreateLOGICNIM()......ceeeieiiiiiiie s e e e e e e e e e e e e emeer e s e e e e e e e e e eeeeeeeeeeesstnnneeeeeeeees 146
FASDEIEtELOGICNMI()...eeiiieeeeee e e e e eeere e 148
FASRESOIVELOGICNIM()....ueiiiiee et emmmnennnnnes 150
FOSSEIRESEIROIE() ettt nnne e 155
0 R =T 1Y/ 0 L= () PSRRI 157
Chapter 8. Interprocess COmMMUNICALION.ooiiiuuiiiiieeer e eeeeeeeeeb e 158
WIting MeSSages t0 QUEUES.cciiiie e e e e eieeeeeeeeee e e e e e e e e e e ettt mmme e e e e e e e e eeaena e ann 159
0 K =] o =T (o= 1] (O L OSSP T PPPPPPPP 161
[0 (Y O [0 17T I PP UPPPPPTN 164
0 R OA = 1 (T L PSSP PPPPPP 165
0 £ o Yo (@) PP 167
0 E{ @ 01T 0 [1 PP PP PPPPPRPPPPR 168
FASPUIGEMSO(). c.vtuueeeieiiii ettt e ettt e e e e e e eeme e e et e e e e e e e et e e e e s ennneeseestaaeaeeeenes 171
FOASQUETYQ()- -+t eeeeeeeeeee ettt ettt et et e e e e e e e e e e e e eeas 173
[0 (Y L= T= 1o [) PP 175

[0 KU] (oo 1@ PP 178

0 RSy VAT L1 (= OSSP 179

APPENTIX AL DBEA TYPES. .t ee e eeeeaneee e e 184
FY o 01T Lo Dt = T = o g O o o [190
10 FDSERR _ACCESSoi ittt e e et e e e e amnreneees 190
-20 FDSERR _ADDRESScotiiiiiiiii e e 191
-25 FDSERR _APPL_DOWN.....ooitiiiiiiiiiiiiiee ettt rmmne e e e 192
-30 FDSERR_BLOCK _SIZE.....cuttiiiiiiiiiiiii et 192
-40 FDSERR_BUFFER_SIZE........cco oottt seensss s en e e e e e e e e e es 192
-50 FDSERR_CHAIN_THRESH.......utttiiiiiiiiiiiiii et 192
=60 FDSERR _CONFIG.....oiiiiiiiiieieiii oot e e e e e e e s ennreneees 192
=70 FDSERR _CORRURPT ..ottt e 193
=75 FDSERR _DATE_TIME......ci oot ieeee et ceees s eeeeeeeeeean 193
-80 FDSERR_DIR_INDICATOR.....ciiiiii ittt 193
290 FDSERR _DISK ..ottt e e e e e e e s annre e neeees 194
-100 FDSERR _DISK _FULL.....uuiiiiiiiiiiiiiiiiiicceeeiiiiiieeeee ettt e e e e e e e e e e e e e e annnee 194
-110 FDSERR _DIST _FREQ ... uuiiiiiiiiiiiiiiiiiiieeeteeeeeeeeeeeeeaaaaaaaaeessmmreeaaaaaaaeaaaeassssnannnnns 194
-120 FDSERR_DOMAIN_NAME.......coiiiiiiiiiiiiiiiineeiiieeerre e e e e sssssseseeeeeeeaaeaeeens 194
-130 FDSERR_DOMAIN_NOT_FOUND.......ccceiiiiiiiiiiteeee e ssin e aeensnenennes 194
-140 FDSERR_DOMAIN_TYPE.....tttiitiiiiiiiiiiiiiis ettt e smmme e e e e e 195
=150 FDSERR _DOWN.....uuttiiiiiiiiiiiiiie e e ceeeeee ettt e e e e e e e e e e e s s s s s s immme e e e e e e e s e s s s sssssneesaeeesnnnnes 195
=160 FDSERR _EOKEot e e ettt 195
170 FDSERR _EXISTS oot ee e e e e amnrnnnees 195
=180 FDSERR _FILE_FULL....ccoiiiiiiii i eeee st cnees e e e e e e e e eaas 196
=190 FDSERR_FILE_NAMEoiiiiiiiiiiiiee ettt e 196
-200 FCBERR_FILE_NOT_FOUND......utitiiiiiiiiiiiee ettt nene e 197
2210 FDSERR _FLAGoiiiiiiiie et eeee s enennnnnnnnes 197
=220 FDSERR _HANDLEcotiiiiiiiiiiee et 198
-222 FDSERR_HANDLE_FORCED_CLOSED...........ccuutitiiiiiieiieeesevieineeeeeeeeeee e 198
=230 FDSERR _INIT ...ttt e ee ettt e e e e e e e e e e e e e e e e smmeeeeeaeeeas 199
-240 FDSERR _INTERNALccoi it eeee st e ees e ee e e e e e e e e e enan 199
=250 FDSERR _INTERRUPT.....citiiiiiiiiiiieie et 199
=260 FDSERR Q..o ee e annna e 199
S2T0 FDSERR _KEY. ...ttt eee sttt enets ettt e e e e e e e e e e e e e e e smmmeeeaaaeeeas 200
-280 FDSERR_KEY_NOT_FOUND.....cutiiiiiiiiiiieiee e simnne e 200
=290 FDSERR _KEY _SIZEooiiiiiiiiiiiee e 200
-300 FDSERR _LOGICAL_NAMEottitiiiiiiiiieee ettt rmmma e 201
-310 FDSERR_LOGICAL_NAME_NOT_FOUND.......cccetiiiiiiiiiieeee e 201
=320 FDSERR _MEMORY......uuiiiiiiiiiiiiiiiiiesieesssiesieeseeeeeeeeeaaaaaeeammseesaeeaaaeaaaaaaeassseesamnnas 202
-325 FDSERR_MEMORY_COSTRAINED........ccoiiiiiiiiiiiiieeee e eeeevveee 202
-330 FDSERR_MESSAGE_SIZE........cciiiiiiie e eeeeeiee et reeee e 203
-340 FDSERR_NODE_NAME......cotttiiiiiiiiie et mene e 203
-350 FDSERR_NODE_NOT_FOUND......cciiitiiiitie e eieeeiiiee e rmene s e 203
-360 FDSERR _NODE_TYPEo iiiiiiiiiieeee e aeenss s e e eeeeaaeaaeeens 204
-370 FDSERR_NOTIFY_QUEUEoiiiiiiiiiiiiiceeeee et ree e 205
-375 FDSERR_NOT_DISTRIBUTED.........cciiiiiiiiiiiteees s eenns e 205

-380 FDSERR_NOT_RECONCILED........cttitiiiii e eeeeee e 205

-390 FDSERR_NUM_BLOCKS........c oo 205

400 FDSERR _OS...ciiii ettt eera 205
-410 FDSERR_OVERFLOW......cootiiiittiiiiiei e s e e e e e e e e e s ammmnn s s s e e e e e e e e aaeneenannnes 205
-420 FDSERR_QUEUE_CLOSED......cciiiiii et eeeeeeeeeeeeememe e 206
-430 FDSERR_QUEUE_EMPTY ..ottt emmma s aan e e e e e e 206
-440 FDSERR_QUEUE _FULLooiiiiiiiiiiei et eeeeeeeeee e 206
-450 FDSERRQUEUE _NAME.......cco oottt s 207
-460 FDSERR_QUEUE_NOT_FOUND.......uuuiiiiiieiieeee e eeeeeveene e 207
470 FDSERR_QUEUE_SIZEo eeeeee e mmme s 207
-480 FDSERR_RAND _DIV...uuiiiiiiii ettt 207
490 FDSERR_REC _SIZE........ooiiiiiiie it erenses s e e e e e e e e e e e e e e eaarannnas 207
-500 FDSERR _REMOTEot emaaas 208
-510 FDSERR_RESOLVED NAME......ciiiiiiiiiiiiiieieeeeen e 208
-520 FDSERR _RESOURCE........utuiiiiiiiie ettt veees e e e e e e e e e e e eeeeaaaaaaaes 208
-530 FDSERR_ROLE_CHANGEcooiititiic s errma s e e e e 208
-370 FDSERR_NOTIFY _QUEUE........coiiieeee e 209
-375 FDSERR_NOT _DISTRIBUTED........cutitiiiiiie e eveeee e 210
-380 FDSERR_NOT _RECONCILED.........cttticiiie e eeeeeeee e 210
-390 FDSERR_NUM _BLOCKS.o iieeeeeeeeeee e 210
400 FDSERR _OS...ciiiiii i eeeeee et eeeeeeeeerrs 210
-410 FDSERR_OVERLOW......coiiiiiiiiiie s et e e e e e e e e s smmmna s s s e e e e e e e e aeeaaeaannnes 210
-420 FDSERR_QUEUE_CLOSED......cciiiiiiiieiiiieeeeeeeet e eeeeeeeeeeeeeeemme e 211
-430 FDSERR_QUEUE_EMPTY ..ottt emmman s e e e e e 211
-440 FDSERR_QUEUE _FULLoviiiiiiiiiii e eeeeeeteeee e 211
-450 FDSERR_QUEUE_NAME.........cci ittt 211
-460 FDSERR_QUEUE_NOT_FOUND......uuuuiiiiiiiieie e eeeeevieeee e 212
470 FDSERR_QUEUE_SIZE..... ..ot 212
-480 FDSERR_RAND DIV...uutiiiiiiiii ettt 212
490 FDSERR _REC _SIZE........ooiieeiei ettt eeeeiis s e e e nnnas 212
-500 FDSERR _REMOTEot emaaas 213
-510 FDSERR_RESOLVED NAME......ciiiiiiiii et 213
-520 FDSERR _RESOURCE.......cttuiiiiiii ettt eeeee e e e e e e e eeeaaaaaaaes 213
-530 FDSERR_ROLE_CHANGEcoiiittiiiice e erre s e e 213
-540 FDSERR_ROLE _NAME.......ciiiiiiiiiieii et 214
-550 FDSERR_ROLE_NOT _ROND.......oottiiiiiiiiieie et aeeee e e e e 214
-555 FDSERR _SCOPKE.... ..ot e e e enen s 215
558 FDSERR_SEEK TYPE ...t eeeeee s e e e e e e e e e e e aeaaaannes 215
-560 FDERR _SEQUENCEottiiiii ettt eeeet e e eaeaaaaaes 216
570 FDSERR _SYNCID......ccoiiiiiieieeimmme e er e e e e e e e e e e e e e amaenas 216
-575 FDSERR_THREAD _LIMIT....cooiiiiiiiic et e e 216
-580 FDSERR _TIMEOUT.. ..ottt e s eeeeiis s e e e e e e e e e e e e e e e eearannnas 216
Appendix C. Operatingystem Error COUES..........oooveiiiiiiiiiiie e 217
Error Codes from Windows NT or Windows 2QQQ.............ccoviiiiiieemiiieeieeeeeeeveeei 217
5 ERROR_ACCESS DENIED.......cottiiiiiiiiiee et eeeeeeeeee e 217

6 ERROR_INVALID _HANDLE........ootiieee e eeeeee e, 218

21 ERROR_NOT _READ ...ttt eeeeeeeeeseeeeeseseeseesesseeeessessseseeseeseseseesessseeeed 218

Preface

This manual explains how to use the application programming interfaces (APIs)
provided with Distributed Data Services (DDS) to develop distributed applications.

Who Should Read this Manual

This manual is primarily for retail systems programmers who are programming
using DDS/CSF on the Windows operating systems.

This manual assumes that readers are familiar with the Windows operating
systems and are proficient in C language programming.

How This Manual Is Organized
This manual is separated into eight chapters and three appendixes:

Syntax Conventions

The syntax of DDS command line commands is shown using graphic notation
consisting of a statement that is tailored to the parameter requirements of each
command. To read the diagrams, follow the main path line and move from left to
right and from top to bottom.

Syntax diagrams use symbols to identify the sequence of information:

1 A command statement begins with: and ends with:

1 A command statement longer than one line continues to a
second line with:

1 where it resumes with:

Required Parameters

A parameter that you must include is displayed on the main path line:

»— COMMAND variable —»«

If a command statement has two or more required parameters, they are shown
consecutively on the main path line. A choice of required parameters is shown with
one choice on the main path line and the other choices on branch lines below the
first choice:

s——Ccommand keyword1

keyward2 —Evarife—l—ﬂ
(")

Type this command in one of two ways:

command keywordl keyworddriable)
command keywordl keyword2 (*)

Default Parameters
A default parameter is shown on a branch line above the main path line:

KEYWORD
»—COMMAN D{H EYWORD
KEYWORD

keywordl is the default.

Optional Parameters
Parameters that you can include are shown on branch lines below the main path
line:

v
'3

variable

r——command iz
keyword

Type this command in one of the following ways:
command

commandvariable

command keyword

Branch lines can include branch lines of their own:

commandi
’b_[ournrna rl[:|2J i:varfatu'e—

keyword —[Dn —_|—
aff

L
r

If you include the keyword parameter in this statement, you must also include
on or off.

Repeating Parameters

An arrow on a line above a parameter menas that you can repeat the parameter,
or enter more than one of the listed parameters:

#r——command LD n -
keyword off

=

arfable

The arrow above variablemeans that you can include one or more values when
you type com mand . The diagram indicates that a blank space is required
between each variablevalue.

For commands that have optional separators between repeated values of
avariable

#—rcommand Dnj—rd
LDFF

keyword—

variabfel

The arrow above variablemeans that you can include one or more values when
you type command . This diagram indicates that a comma can optionally be
placed between each variablevalue.

If a syntax diagram contains notes, the note numbers correspond to
numbered elements shown in the diagram within parentheses:

L J
&~

ariable-2—
eyward

#—command {1 b

where:
1. This is a syntax note that refers to the keyword command .
2. This syntax note describes variable

Related Publications
In addition to this manual, you may want to consult the following publications.

1 QVS Distributed Data Services/Controller Services for Window
Installation and Configuration Guide.
T QVS Distributed Data Services/ Controller
Guide

All of these publications may be downloaded from the QVS web site at
www.qvssoftware.com. You may also call QVS at (919) 676-1991 for
assistance.

http://www.qvssoftware.com/

Chapter 1. System Overview

Nodes

The IBM Distributed Data Services/Controller Services Feature (DDS/CSF) is a
distributed software platform designed as a base for the development of
distributed applications for the store environment.

The main functions are:

9 Interprocess communication with local and remote transparency

1 Data access with local and remote transparency

9 Data distribution for redundancy, performance, and availability

9 Directory services

1

Installation, configuration, and administration

The following sections provide an overview of the concepts that are common to all
components of DDS:

T ANodesoO

T ALogi cal Names and Role Names?o
f AiBroadcast Domainso

f ADistribution Domains and Rol esbo
T AFil e Mam&Qsaeae Nameso

T AiComponent so

T AFile Distributiono

T ADisk |1/ O Prioritizationo

A nodeis a LAN-attached machine that is running DDS.

Nodes can be connected via LANs to form a system.A system is the group of
nodes for which files are managed. A node can be connected to a subset of
nodes via one LAN and to other subsets of nodes via different LANs. Data
distribution, remote file access, and interprocess communication are supported
only between nodes that are connected by a LAN. DDS does not provide a bridge
or router function.

For all system topologies with more than one node, one node must be installed
and configured as the configured primary distributor and another node can be
installed and configured as the configured backup distributor. The backup
distributor is required to add redundancy to the critical store data. Each node must
be connected to the primary distributor and backup distributor by a LAN. See
ADi stribution Domains and Roleso for

an

expl

distributor, and subordinate.

Node IDs

Node IDs are specified for each workstation (node) during the installation of

DDS, and assumed each time DDS initializes. Each node has a single node ID,

regardless of how many LANs are used to connect it to other nodes.

The rules for node IDs are:

1 Each workstation within a system must have a different node ID. Duplicate
nodelDs are not confirmed during installation, but they are detected when
DDS initializes. If duplicate node IDs are detected, you must reinstall DDS
to correct the problem.

1 No two workstations on a LAN can have the same
node ID even if they are members of different DDS
systems.

1 Node IDs can be from 1 to 8 alphanumeric characters
(blanks are not allowed). Node IDs are case-sensitive.

1 Do not use node IDs whose first three characters are
FDS. These names are reserved.

1 Greater than and less than characters (< and >),
question marks (?), asterisks (*), and colons (:) are
not valid characters for node IDs.

i1 Afterinstallation, node IDs can be changed only by
reinstalling DDS.

System ID

Each system has a 4-byte system ID. The system ID is specified at each node

during the installation of DDS, and defaults to 0000. The Name Services

component uses the system ID as a qualifier when locating the node that has

assumed a particular role. See fALogical Names
of roles. This ensures, for example, that each node finds the acting primary

distributor for its system, and that files are distributed only within a system. The

system ID must be set to a unique value for each system in environments where

multiple systems are interconnected via bridges. A system ID cannot be changed

without reinstalling DDS.

If you assign a different system ID to each system, the systems can be connected
using a LAN or a gateway without causing messages intended for one system to
be sent to another system.

If you assign the same system ID to each system, the LANs can be connected
using a gateway; both LANs are considered the same system. If this type of
system is used and you are using the Data Distribution component, there should

only be one configured primary distributor and one configured backup distributor
for the entire system, even though they might be on different LANS.

Logical Names and Role Names

DDS provides a name-resolution capability, allowing applications to use logical
names instead of hard-coded file names, interprocess communication (IPC)
gueue names, and node IDs. These logical names are dynamically resolved
when the application runs.

Some names are fairly static over time. An example is the name of a
configuration file. Although this name is not likely to change very often, if ever, it
is still desirable to avoid using the name in an application program. The use of a
logical name allows the file name to be changed without having to rebuild the
application. A logical name has the following format:

<name>

Where nameis 1 to 260 characters and the less than and greater than
characters (< and >) are required delimiters.

Other names are more dynamic, such as the node ID of the primary distributor.
This changes whenever the backup distributor takes over for the primary
distributor. In this case a role (the primary distributor) is assumed by a particular
node. A logical name can be used to identify this role and is referred to as the role
name. A role name has the following format:

<name.>

Where nameis 1 to 8 characters, the less than and greater than characters (<
and >) are required delimiters, and double colons (::) indicate that this is a role
name.

The use of a role name makes it easy for an application to open a file or IPC
gueue on a node that provides a particular service when the service may move
from node to node as conditions change. The primary distributor is an example of
a service provided by DDS. Applications can be written that provide other services
and role names can be defined for them.

Note: Hard links cannot be used for distribution names.

Reserved Role Names

The following role names are reserved by DDS and are used to identify the
primary distributor and backup distributor nodes. These names are dynamically
maintained by DDS and cannot be modified by the user.

Role Name
Reserved For:

FDSFDXCP::
Configured primary distributor

FDSFDXCB::
Configured backup distributor

FDSFDXAP::
Acting primary distributor

FDSFDXAB::
Acting backup distributor

Broadcast Domains

A subset of nodes within a system can be grouped into a broadcast domairA
broadcast domain has a name, the broadcast domain name, which has the
same format as a node ID: 1 to 8 bytes. However, DDS reserves all broadcast
domain names that begin with the prefix FDS.

Note: DDS currently supports a maximum of one broadcast domain.

Broadcast domains are useful for maximizing performance and minimizing
resource utilization when distributing messages or files to a large number of
nodes. Within a broadcast domain, DDS
broadcast a datagramto all nodes. The DDS Data Distribution component
supports distributing files to all nodes within a broadcast domain. The Interprocess
Communications component can send a message to every node within a
broadcast domain.

Distribution Domains and Roles

Each node can assume a distribution role. There are three possible
distribution roles:

Primary D istributor
The primary distributor controls the primary copy of all distributed files.
Only the primary copy of a file can be modified directly by an application.

Backup Distributor
The backup distributor controls the backup copy of a file and can take
over for the primary distributor if the primary distributor fails or is
deactivated.

Subordinate
All other nodes configured with the Data Distribution component are
considered subordinates and manage image copies of distributed
files.

A node can be configured with a distribution role, but under certain
circumstances can assume another role. In that instance, the node is said to be
acting the role. Specifically, when a node that is configured as the backup
distributor assumes the role of the primary distributor that has failed, the backup
distributor is said to be the acting primary distributor.

A group of nodes form a distribution domain. There are two types of
distribution domains:

Mirrored domain
Defined to be the primary distributor and backup distributor. There is
only one mirrored domain, so it is not named.

expl oi

Broadcast domain
A broadcast domain can include zero (0) or more nodes. Files that
are distributed to a broadcast domain are distributed to each node
in the domain, as well as to the acting backup distributor.

A given file can be distributed to only one domain.

By default, all files on a node are local files. A local file is a file that is not
distributed (is not a primary copy, backup copy, or image copy). A file or
subdirectory on the acting primary distributor can be made distributed using
either the Data Distribution Utility or an application that calls the
FdsSetDistribution() API. See the IBM Distributed Data Services/Controller
Services Feat ur es GudeforWbre idfamason absut usifg
the Data Distribution Utility. See FdsSetDistribution() for more information about
using the API.

File Names and Queue Names

For a specific node, you can identify each file using the operating system path
where the file is located and the file name. The operating system path and file
name are called the file specificationSimilarly, you can identify a queue using
the queue name.

However, with DDS you can access files and queues on any node. Therefore,
you must use a retail path specification to identify the file or queue. A retail path
specificatiorcontains a node specification or broadcast domain specification
prefixed to the file specification or queue name.

Note: If you do not include a node or broadcast domain specification in the retail
path specification, Distributed Data Services assumes that the file or
queue resides locally.

A node specification can be in one of these forms:

1 A node name followed by two colons, which specifies the 1D
of the node directly. For example:
NodelD::

9 Arole name followed by two colons and delimited with the greater than and
less than signs. The role name will resolve to the ID of the node that is acting
in the role. For example:

<RoleName::>

A broadcast domain specification is valid only to identify a queue. It must
be a string, containing no blank characters, that includes a broadcast
domain name followed by two colons. For example:

B_DOMAIN::
Assume that you have a file called MYFILE.DAT located in the subdirectory

D:\FILES on the primary workstation with a node ID of Nodel. The following
retail path specifications are valid:

D:\FILES\MYFILE.DAT
Nodel::D\FILES\MMYFILE.DAT
<FDSFDXAP::>D\FILES\MYFILE.DAT

You can also use logical names for any part (or all) of a retail path specification.
See ALogical Names and Role Nameso for more

Note: If you use a logical name for a file name or queue name in a retail path
specification that contains a remote node ID or role name, the logical name is
resolved on the remote node.

Components
The components for DDS are:

Name Services
Provides a name-resolution capability. This allows applications to use
logical names, or aliases, instead of hard-coded file names, IPC queue
names, and node IDs. These logical names are dynamically resolved at
run time.

See AChapter 7. Name Serviceso for more |

File Services
Allows you to access both local and remote files. It can be
optionally configured on zero or more nodes to share files with
other nodes.

Three types of files are supported:
o Keyed files

0 Sequential files

o Binary files

See Chapter 4. File Services for more information.

File System Interface
Provides support to distribute native operating system files, referred to
as byte stream files.

This component also provides a disk I/O prioritization mechanism that
overrides the standard operating system prioritization scheme. DDS
prioritizes disk I/O based on thread priority, allowing high priority
requests, such as price lookups, to be processed ahead of lower priority
requests.

Interprocess Communications
Provides a peer-to-peer messaging service that allows application
programs to send and receive messages. The messaging service is
provided between processes running on a single node (intranode IPC) and
on different nodes (internode IPC). The internode IPC function is a
configuration option. It is required on all nodes in a system unless the
system consists of a single standalone node.

The following LAN media are supported:

o Ethernet
0o Tokenring

o IBM Wireless LAN

Note: If you install the DDS 4690 Controller Services Feature, DDS
also provides store loop support.

Data Distribution
The Data Distribution component provides a distributed file capability
that replicates data to multiple nodes, keeping each image
synchronized during normal operations. It also performs reconciliation
when failed nodes are brought back into service. See Chapter 6. Data
Distribution for more information.

Node Control
This component allows you to perform administrative functions such as
viewing information about the nodes within the DDS system and
activating or deactivating the primary distributor. These aspects of node
control are used through a utility. Node control is also responsible for
synchronizing the time and date of all nodes within a system.

There is also an API that generates a list of all node IDs known to the
DDS system, including nodes that DDS has detected as being active on
the system and user-defined nodes that are not yet active.

See the IBM Distrbuted Data Services/Controller Services Feature

for Windows fdramere idfermaBanialmb starting and

stopping DDS and using the Node Control
more information about using the node list API.

Problem Determination and Analysis
The Problem Determination and Analysis component collects problem
determination information. The information is presented on an interactive
panel that allows you to select the system message logs, system error
logs, and system dump files you wish to work with.

4690 Controller Services
This optional feature can be installed on one or two nodes. It supports
4680/4690 Operating System controller applications running under
Windows NT, 2000, XP, or Server 2003 and the attachment of registers
running the 4690 Operating System. Refer to the IBM Distributed Data
Services/ Controller Services fofem@d ure for
information about 4690 Controller Services.

4690 Multiple Controller Feature
This optional feature can be installed on zero or more nodes. It
provides support for 4690 Controller Services Feature nodes to
interact with other 4690 Controller Services Feature nodes. It also
provides support for 4690 terminal backup in a multi-node
environment. Refer to the IBM Distributed Dat&ervices/Controller
Services Featur e f orforWbreidfameaton&bsuwr 6 s Gui d
4690 Multiple Controller Feature.

File Distribution

DDS enables the distribution of files to other nodes in a distribution domain. When
a file operation is directed to a controlled drive, DDS determines if the file has
been defined as a distributed file or is in a distributed subdirectory, and then
distributes the file operation as appropriate to other nodes.

File distribution is performed with no user intervention. Any operating system
command (for example, COPY or ERASE) or application program statement that
results in the modification of a distributed file causes DDS to distribute the
operation to other nodes.

DDS must be running to detect whether a file is distributed. Until DDS is started, it
assumes that all files on a controlled drive are distributed. Therefore, any attempt
to modify a file on a controlled drive when DDS is not running results in an error.

Note: If the DDActive configuration keyword is set to NO, DDS does not check
to see if files on controlled drives are distributed, so this error is not
returned. See the Configuration Keywords chapter in the IBM Distributed
Data Services/Controller Services Feature for Windows Installation and
ConfiguratiorGuidefor more information about the DDActive
configuration keyword.

See Chapter 6. Data Distribution for more information about distributing files.

Refer to the Planning for DDS chapter in the IBM Distributed Data
Services/Controller Services Feature féfindows Installation and Configuration
Guidefor more information about controlled drives.

Disk /O Prioritization

Processing certain file 1/0 operations is extremely time critical in the retail
environment. For example, when scanning items at the point-of-sale terminal, the
salesperson expects a consistent response time. If the processing load on the
disk used to service price lookup requests increases, the response time
experienced by salespeople scanning items at the point-of-sale terminals should
remain relatively constant.

DDS uses a disk I/O prioritization scheme to assure that time-critical processes
are given highest priority for disk access. This prioritization scheme overrides the
standard operating system prioritization scheme, so that file access is granted
based on the operating system priority of the process thread issuing the request.

To take advantage of disk 1/O prioritization, an application program can increase
the priority level of time-critical threads using the SetThreadPriority() APl on
Windows NT, 2000, XP, or Server 2003.

Disk I/O prioritization is most effective when all partitions on a single physical
disk are controlled by DDS. This should be considered when configuring
partitions as controlled drives. Refer to the Planning for DDS chapter in the
IBM Distributed Data Services/Controller Services Feature for Windows
Installation and Configuration Guifte more information about controlled
drives.

Chapter 2. Introduction to the API

The DDS application programming interface (API) is a collection of individual
functions (also referred to as APIs) that you can use to enable your applications to
interact with DDS.

Your application can be one of many applications that concurrently uses DDS.
This chapter describes the general interaction between your application and DDS.

C Language Header Files

DDS provides the C-language header files required to compile your program using
the API. The default location of the header files is in the target_install_directoXfgs
directory of the disk on which DDS was installed.

The complete list of header files is:

config.h
defs.h
dist.h
errno.h
fds.h
file.h
ipc.h
names.h
nodes.h

=4 =4 -8 _8_48_9_9_°_-2

Building Your Application
To build your application:
1 Include the C-language header files in your application.

9 Link your application executable to the DDS import libraries, which are
located in

target_install_directoXp.

The import libraries for Windows are as follows:

fdsbase.lib
fdscfg.lib
fdsfile.lib
fdsipc.lib
fdsnames.lib
fdsnodes.lib

E R]

The DDS API functions use the same parameter passing conventions as
operating-system API functions. Any compiler that supports the calling of

operating system APIs can be used to call DDS API functions.
DDS directly supports the following compilers:

1 IBM VisualAge C++ for Windows, Version 3.5
or higher

1 Microsoft Visual C++, Version 2.0 or higher

In addition to the above compilers, DDS can be used with other compatible 32-
bit compilers. The C header files included with DDS are standard C code, and
the import libraries are standard import libraries (generated using implib.exe).

Note: If you use the Microsoft Visual C++ compiler, you must compile
with Optimization set to Off.

If you intend to use a compiler with a default calling convention that differs from
the operating-system linkage convention, you must modify the DDS header file
(defs.h). You must set the constant FDS_SYSLINK in the header file to the
reserved keyword used by the compiler to indicate operating-system linkage
conventions. To specify the calling convention for a given function, that keyword
must be used when the function is declared. Refer to your compiler documentation
for more information.

Calling DDS API functions from languages other than C or C++ is possible, but no
header files are included. The only requirement is that the language must be able
to call functions using the operating-system linkage conventions, including passing
pointers to variables and null-terminated strings.

Optimizing Application Performance

Read this section before you write applications to learn how to optimize the rate
at which the applications function in conjunction with DDS. Some performance
tuning can be done with little modification to the application, but some must be
designed into the program. The following sections discuss several ways to
optimize the performance of an application that is using DDS.

Memory Considerations

There is a direct correlation between the maximum gueue size specified on
the FdsCreateQ() APl and the amount of memory required by DDS.
Therefore, you should not create queues larger than necessary.

Each thread that uses DDS requires an amount of memory that is slightly
greater than the size (in bytes) of all parameters being passed to and returned
by a particular call to the API plus sufficient memory for an additional stack.

There is also a process-related memory overhead approximately the size of a
single threadb6s overhead.

Multiple Threads and Processes

DDS supports multiple applications on the same node simultaneously utilizing
DDS. Additionally, multiple threads of a process can run within DDS concurrently
(referred to as multithreaded.

The following restrictions apply to each thread in a multi-threaded application:

1 Asingle thread can open an IPC queue, keyed file, or sequential file
multiple times without intervening close operations. The FileAccess
attributes specified on each open of the same keyed or sequential file
need not be identical. (The FileAccess attributes are described in
AFds OpenKeyedFile()o.)

1 DDS file handles and queue handles are not inherited by child processes
and cannot be shared between processes.

1 There are no differences between the restrictions on access to a single
keyed or sequential file for two processes on the same node and the
restrictions on access to a single file for two processes on different nodes.

See Memory Considerations” for infor

Designing Your Application

This section describes attributes of DDS that apply to any of its functions.
Consider these attributes when designing your application.

Accessing the Prime Copy of a File

The prime copy of a distributed file exists on the acting primary distributor. The
application can access this version of the file from any node in the system via
the File Services APIs by using the acting primary role as part of the retail path
specification (the acting primary role is <FDSFDXAP::>).

The prime copy of the file becomes unavailable when the acting primary role is
deactivated or the acting primary distributor becomes unavailable. If this
happens, the File Services APIs will return error code -530
FDSERR_ROLE_CHANGE or -350 FDSERR_NODE_NOT_FOUND
respectively.

Your application should perform the following steps:

1. Close the file handle using the appropriate File Services API.

2. Save any updates to the prime copy in a local file to be applied when the
prime copy becomes available.

3. Attempt to reopen the prime copy.
Note: The File Services APIs have no time-outs. Therefore, it is up to
the application to continually attempt to open the file, with some delay between
each attempt, to avoid overutilizing system resources.

4. If the prime copy cannot be reopened, indicate to store personnel that the
primary distributor is unavailable and that the backup distributor should be
activated as the primary distributor.

Note: Accessing the prime copy of a file is a remote file access and,
therefore, slower than a local file access. If the application is simply
reading data from a distributed file, it should access the image copy of
the file using the File Services APIs. DDS will distribute any changes
made to the prime to all image copies of the file.

Argument Formats

Some common types of arguments are of a standardized format throughout
DDS. Follow these rules for your application when you use one of these types:

All pointer arguments passed to a DDS function must point to valid memory on
input. DDS does not allocate application memory.

DDS validates pointer arguments. If pointer arguments are not valid, the error -10
FDSERR_ACCESS is returned.

All (char *) arguments passed to a DDS function must be null terminated. All
(char *) arguments returned by a DDS function are also null terminated.

All length parameters in the API associated with (char *) parameters include the
null terminator (\0).

Each file name passed to an API must be either a fully qualified file specification
or a logical name that resolves to a fully qualified file specification.

Most of the DDS APIs require one or more of these types of parameters:

Input

Input parameters are those for which the application must provide valid data
when the APl is called.

For exampl e, FileName is an input parameter
FdsGetFileAttributes() is called, FileName must be a valid name of an existing

file.

Input/Output

Input/output parameters are those for which the application must provide valid
data when the APl is called. When the API has completed (successfully or
unsuccessfully, depending on the API), DDS replaces the data passed in.

Note: When pointers are passed to an API, DDS replaces the value in the
location pointed to by the pointer. It does not modify the pointer itself.

For example, RecordSizePtr is an input/output parameter for

AFds ReadKeyedRecord()o. When FdsReadKeyedRec
the location pointed to by RecordSizePtr is the maximum size of the record to

read.

When the API has completed successfully, the value in the location pointed to by
RecordSizePtr is replaced with the actual size of the record read.

If the API does not complete successfully and the error is -490
FDSERR_REC_SIZE,the value in the location pointed to by RecordSizePtr is
replaced with the size of the record that could not be read.

Output

Output parameters are those for which the API returns a value to the application.
However, the application must provide a valid data location for the API to provide

a value when the APl is called.

For example, CurrentSizei s an out put parameter for AFdsC
When FdsQueryBinFileSize() has completed successfully, the value in the
location pointed to by CurrentSizeis the current size of the binary file in bytes.

CurrentSizemust be a valid pointer of type unsigned long when the API is
called. The API does not return a pointer; it replaces the value stored in the
location pointed to by CurrentSize

Error Codes

The following list contains the error codes that could be returned from any API
call. The correct application recovery for each error is specified in Appendix B.
Error Codes.

-20 FDSERR_ADDRESS
-150 FDSERR_DOWN

-230 FDSERR_INIT

-240 FDSERR_INTERNAL
-250 FDSERR_INTERRUPT
-320 FDSERR_MEMORY
-400 FDSERR_OS

-520 FDSERR_RESOURCE

E R I

Initializing Your Application

The first thing your application must do to use DDS APIs is to register by calling either the
Fdsinit() API or the FdslInit2() API.

FdsInit()
Purpose
Initializes DDS for use by the application.
Syntax
#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>
long Fdslnit();
Remarks

After any thread of a process calls this API, all threads of that process are
initialized. Therefore, FdslInit() must be called exactly once for each
process.

Either FdslInit() or FdsInit2() must be called successfully before any other DDS
APIs are used.

Note: To share memory among processes, DDS uses the address hex
40000000 as its base memory address. If a call to FdsInit() returns the
errd00ANFDSERR_OS0, and |l ogs the following

logs: The operating system returned error 487 at location 50303 , then
the memory used by your application is conflicting with the DDS memory
address.

To change the DDS base memory address, add the environment
variable FDS_SHARED_MEMORY to the system configuration in the
Registry, specifying another memory address. The memory address
must be within the range of hex 01000000 and hex 75000000.
Otherwise, DDS will not initialize and an error will be logged.

Error Conditions

FdsiInit() returns the following values:
-170 FDSERR_EXISTS

-200 FDSERR_FILE_NOT_FOUND
-560 FDSERR_SEQUENCE

Examples
#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc =0;

[* Before using APIs, you must initialize Distributed Data Services */
rc = Fdslnit();

if (rc = FDS_SUCCESS)

{

printf ("Initialization failed (rc = %Xn", rc);
exit (0);
}

FdsInit2()

Purpose

Initializes DDS for use by the application. The difference between FdslInit()
and FdslInit2() is that FdsInit2() will not complete until DDS has been started
and initialized completely if you specify FDS_INIT_WAIT_FOR_DDS.

Syntax
#include <stdlib.h>
#incluwe <stdio.h>
#include <fds/fds.h>

long FdslInit2(unsigned lotgitFlags);

Parameters

InitFlagsd input
Determines whether the API will complete (returning control to the
application) as soon as DDS has starting initializing or will wait until

DDS has completed initialization. Valid values are:

FDS_INIT_DEFAULT
The API will complete as soon as it starts DDS without waiting
for DDS to initialize completely. This value is the default.

FDS_INIT_WAIT_FOR_DDS
The API will not complete until DDS has been started and
initialized completely.

Remarks

After any thread of a process calls this API, all threads of that process are
initialized. Therefore, FdsInit2() must be called exactly once for each
process.

Either FdslInit() or FdsInit2() must be called successfully before any other DDS
APIs are used.

Note: To share memory among processes, DDS uses the address hex
40000000 as its base memory address. If a call to FdsInit2() returns the
errd0D0AFDSERR_OSo, a n d THe opgrating siseemme s s ag e
returned error 487 at location 50308 the event logs, the memory used by
your application is conflicting with the DDS memory address.

To change the DDS base memory address, add the environment
variable FDS_SHARED_MEMORY to the system configuration in the
Reqistry, specifying another memory address. The memory address
must be within the range of hex 1000000 and hex 75000000.
Otherwise, DDS will not initialize and an error will be logged.

Error Conditions

FdsInit2() returns the following values:
-170 FDSERR_EXISTS

-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG

-560 FDSERR_SEQUENCE

Examples

#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>
#include <fds/errno.h>
long rc = 0;
long int InitFlags = 0;
/* Initialize Distributed Data Services and wait fot tei complete */
InitFlags = FDS_INIT_WAIT_FOR_DDS;
rc = FdslInit2(InitFlags);
if (rc I= FDS_SUCCESS)
{
printf ("Initialization failed (rc = %Xn", rc);
exit (0);
}

Chapter 3. Installation and Configuration

DDS provides an API that you can use from your program to obtain information
about the installation and configuration of the product on the local node. This data
cannot change while DDS is running, so you must issue the API call only one
time when each application is started.

An FDS_CFG structure is provided in the DDS header file, CONFIG.H, and it
should be used to declare a variable. During the initialization of your application
program, you can issue the API call to request that DDS store the current
configuration information in this variable. This variable can be referred to while
your application is running without having to make subsequent calls to DDS.

FdsQueryConfig()

Purpose
Obtain configuration data.
Syntax
#include <fds/config.h>
long FdsQueryConfig(FDS_CBE@figInfo, unsigned int BufferSize);
Parameters
ConfigInfod input/output
Input A pointer to an FDS_CFG structure in which the configuration
data is placed.
Output
When this APl completes successfully, the data in the
structure pointed to by Configlrfo is replaced by the current
configuration dat a. See AAppendi x A.
information about the FDS_CFG data structure.
BufferSized input/output
Input A pointer to the size of the structure to be returned. This value
must specify the length of memory pointed to by Configinfo
Output
When this APl completes successfully, the value pointed to by
BufferSizeis replaced with the size of the configuration
structure that was copied to the input buffer pointed to by the
ConfigInfoparameter. If this API returns the error -40
FDSERR_BUFFER_SIZE ,this parameter is set to the required
buffer size.
Remarks

This API is used to obtain the current installation and configuration data for DDS.
This API does not provide logical-names configuration data. See Chapter 7.
Name Services for more information about how to query logical-names

configuration data. Your applications are required to call this API only once each
time an application runs because the installation and configuration data used by
DDS does not change while it is running.

Error Conditions
FdsQueryConfig() returns the following values:
1 -20 FDSERR_ADDRESS
1 -40 FDSERR_BUFFER_SIZE

Examples

The example below declares a variable of type FDS_CFG, which is used to hold the
configuration data. This APl is called to update the configuration structure with the current
configuration data.

#include <fds/config.h>
#include <fds/fds.h>
#include <fds/errno.h>

FDS_CFG ConfigData;

long rc;

unsigned int ConfigDataSize;
ConfigDataSize = sizeof(ConfigData);

rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{
rc = FdsQueryConfig(&ConfigData,&ConfigDataSize);

if (rc 1= FDS_SUCCESS)
{

[* perform error processing */

}

Chapter 4. File Services

The File Services component allows you to manipulate files in a more
structured manner than that provided by standard byte-stream files.

File Services defines three types of files:

1 Keyed files

1 Sequential files

1 Binary files

The File Services component provides APIs for manipulating files of all three
types as well as APIs for general functions such as deleting a file.

The File Services APIs for general functions are:

FdsCreateDir() 0 Create a directory

FdsDeleteFile() 0 Delete afile

FdsExistFile() & Test for the existence of a file

=A = = =4

FdsGetFileAttributes() 0 Return the date and time, and the read and write
attributes of a file

1 FdsGetFileNames() 0 Return a list of the files in a directory

1 FdsQueryFileSysteminfo() & Query the size of a disk and the amount of
available space

1 FdsRemoveDir() & Remove a directory

1 FdsRenameFile() 0 Rename a file

1 FdsRestrictFile() 0 Restrict access to a file

1 FdsSetFileAttributes() & Setthe date and time, and the read and write

attributes of a file

1 FdsUnrestrictFile() 6 Remove access restrictions for a file

The File Services APIs for keyed files are:

FdsCloseKeyedFile() 0 Close a keyed file or write the contents to disk
FdsCreateKeyedFile() o Create a new keyed file
FdsDeleteKeyedRecord() & Delete a record from a keyed file
FdsOpenKeyedFile() & Open an existing keyed file
FdsReadKeyedRecord() & Read a record from a keyed file

FdsReleaseKeyedRecord() 0 Release a lock on a record in a keyed file

= =_ =\ =4 =4 =4 =4

FdsWriteKeyedRecord() o Write a record to a keyed file

The File Services APIs for sequential files are:

f
f

FdsCloseSeqgFile() & Close a sequential file

FdsFindNextSeqRecord() & Move the file pointer to the next valid record in
a sequential file

FdsOpenSegFile() & Open or create a sequential file
FdsReadSeqRecord() 0 Read arecord from a sequential file

FdsReturnSeqgFilePos() & Return the file-position indicator for a sequential
file

FdsSeekSeqFilePos() 0 Seek to a point in a sequential file

FdsWriteSeqRecord() & Append a record to a sequential file

The File Services APIs for binary files are:

A = = =4 =4 =4 =4 -4 -4

FdsCloseBinFile() & Close a binary file

FdsFlushBinFile() & Flush any data buffered for a binary file
FdsOpenBinFile() & Open or create a binary file
FdsQueryBinFileSize() & Query the size of a binary file
FdsReadBinFile() & Read from a binary file

Fds SeekBinFilePos() & Move the file pointer in a binary file
FdsSetBinFileLocks() & Lock or unlock a range in a binary file
FdsSetBinFileSize() 0 Set the size of a binary file

FdsWriteBinFile() o Write to a binary file

Services and Operation

The File Services component uses other components of DDS to provide services.
This section describes those services and provides general operations
information.

File Distribution

The File Services component uses the Data Distribution component to
distribute file updates to other nodes. See Chapter 6. Data Distribution
for more information about file distribution.

File-Location Transparency

The File Services component provides file location transparency. File-
location transparencgneans that an application is not required to explicitly
indicate the location of a file to access that file; instead, an application can

use logical names and role names to indirectly specify the location of a
file. See Chapter 7. Name Services for more information about logical
names and role names. The same API is used regardless of whether the
file resides locally or remotely.

Priority
The thread priority of the calling application is preserved when
accessing remote files. This, in conjunction with the prioritization
provided by the File System Interface, ensures that disk access is
prioritized across all applications within the system.

Data Integrity
The File Services component sets the write-through bit in the (CreatFile()
on Windows for all File Services functions (except FdsOpenBinFile(),
which allows the write-through bit to be optionally specified). All data
written to such files using File Services APIs is written to disk before
returning to the application; this step protects the integrity of the data
written by the File Services component.

File Content
Although the File Services component places no restrictions on the data
placed in File Services sequential files and keyed files, these files do
contain File Services processing information. Therefore, the File
Services component should always be used for processing File Services
sequential and keyed files.

File Names
The string FDS is allowed within file names.

Operating System and File System Restrictions

The File Services component is implemented by API calls to the
underlying operating system.

These calls can manage file access with a variety of file systems, such as FAT,
FAT32, and NTFS. The file system might also vary between nodes, DASD
devices, or DASD partitions.

There might be differences in the available services, based on differences like file
naming conventions in the operating system or file system. The File Services
component does not attempt to alter or mask the properties of the operating
system or the file system.

The File Services component attempts to call the operating system. If an error
occurs because of the properties of the operating system or file system, the
File Services component returns an error.

Specifically, the File Services component duoas

1 Attempt to detect parameters that are not vd) such as incorrect file names, that are sent to
the operating system or file system.

1 Attempt to detect calls to the operating system or file system that are not consistent with an
API definition. For example, if an API expects a file name and a dyrectme is used
instead, the File Services component does not detect the error. The behavior of the call is
dependent on the operating system and file system.

FdsCreateDir()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Examples

1 Circumvent any security implemented by the operating system or file system.

1 Implement additionakecurity.

Create a new directory.

#include <fds/file.h>

long FdsCreateDir(const chdditName);

DirNamed input

A string containing the name of the directory to be created. The string can
contain logical names, but must resolve to a retail path specification. See
AFil e Names and

Queue

The directory specified by DirNameis created.

FdsCreateDir() returns the following values:

-10 FDSERR_ACCESS

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_IO

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

This example creates a new directory.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc;

char DirName[50] = "dAmydir"; // Directory name
// Initialize DDS. Could use FdslInit2() instead of FdsInit()

Names o

/I Return from API call

for

mor e

n f

rc = Fdsinit();
/1'1f initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Call FdsCreateDir API to create the dimgt"d\mydir"
I
rc = FdsCreateDir(DirName);
printf("FdsCreateDir completed with return code = (%d).rc);
Y end if
else

{

Il else process errors

}

FdsDeleteFile()

Purp ose
Delete a file.
Syntax
#include <fds/file.h>
long FdsDeleteFile(const chdfiteName;
Parameters
FileNamed input
A string containing the name of the file to delete. The string can
contain logical names, but must resolve to a retail path specification.
S e eFileNames and Queue Names 0 o n 1p rgmore
information.
Remarks

The file specified by FileNameis deleted from disk.

Error Conditions

FdsDeleteFile() returns the following values:
-10 FDSERR_ACCESS

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_10

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND

-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example deletes a file.
#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc; // Return from API Call

char FileName[50] = "d\mydin\myfile"; // File name

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Call FdsDeleteFile API to delete\tdydinmyfile"
I
rc = FdsDeleteFile(FileName);
printf("FdsDeleteFile completed with return codg%d)\n", rc);

Y/ end if

else

I else process errors

}
FdsExistFile()

Purpose
Test for the existence of a file.
Syntax
#include <fds/file.h>
long FdsExistFile(const chatifeNamé;
Parameters
FileNamed input
A string containing the name of the file to locate. The string can contain
l ogi cal names, but must resol viFde to a ret
Names and Queue Namesd o0 n 1B @rgmere information.
Remarks

If the file specified by FileName exists, FDS_SUCCESS is returned. If it does not
exist, -200 FDSERR_FILE_NOT_FOUND is returned.

Error Conditions

FdsEXxistFile() returns the following values:
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples

This example verifies that a file exists.
#include <stdio.h>

#include <fds/file.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call

char FileName[50] = "dimydin\myfile"; // File name

/I Initialize DDS. Could use FdsInit2() insted FdsInit()

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Call FdsExistFile API to see if\tdydinmyfile" exists
I
rc = FdsExistFile(FileName);
printf("FdsExistFile completed with return code = (%d).rc);

Y end if

else

{

I else process errors

}
FdsGetFileAttributes()

Purpose
Return the date and time of the last file modification and the read/write attribute of
afile.
Syntax
#include <fds/file.h>
long FdsGetFileAttributes(const chdifeName
FDS_DATE_TIMBé&teTimeint *Flags;
Parameters

FileNamed input
The name of the file for which the attributes should be obtained. The
string can contain logical names, but must resolve to a retail path
specification. See ¢File Names and Queue Nardes 2 y 13fdr ehére

Remarks

Error Conditions

Examples

information.

DateTimed output

Pointer to the location where the date and time of the last modification

to this file is stored.

Flagsd output
Pointer to the location where the read/write attribute is stored. The
valid values are:

FDS FILE_ATTRIBUTE_READ_ONLY
The file can be read but cannot be modified.

FDS FILE ATTRIBUTE _READ WRITE
The file can be read and modified.

FDS_FILE_ATTRIBUTE_DIRECTORY
The name specified for FileNameis a directory.

Because file attributes can be changed at any time, you should always issue
this API call for the latest attribute information.

FdsGetFileAttributes() returns the following values:
-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_10

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

This example retrieves the file attributes for D:\MYFILE.DAT.
#include <stdich>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fdsffile.h>

#include <fds/errno.h>

long rc; // Return from API Call
const char * FileName = "d\myfile.dat"; // File Name

FDS DATE_TIME DateTime; /I Date and time attributes
int Flags=-1; /I R/W and DIR indicator attribute
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Call FdsGetFileAttributes API to get the file's attributes

I
rc = FdsGetFileAttributes(FileName,
&DateTime,
&Flags);
printf("FdsGetFileAttributes completed with
return code = (%d)n",

rc);
I
/I Output the file's attributes returned from the API call
I
printf(" File (%s) has attributesn"
" --=> Flags = (%tin"
" ---> Last Modified on (%d/%d/%u) at (%d:%d:%d)
FileName,
Flags,
DateTime.Month,
DateTime.Day,
DateTime.Year,
DateTime.Har,
DateTime.Minute,
DateTime.Second);
Y end if
else

{

/I else process errors

}
FdsGetFileNames|()

Purpose
Return a list of file names contained in the specified directory.
Syntax
#include <fds/file.h>
long FdsGetFileNames(const ch&irNamePtyvoid *BufferPt; unsigned
int *NBytesPtunsigned int-lag);
Parameters

DirNamePt® input
Pointer to the name of the directory. The string can contain logical
names, but must resolve to a retail pat h
and Queue Nom@mfermatibonor m

BufferPtrd output
Pointer to the buffer where the file names are stored. The file names will
be stored as a series of null-terminated strings.

If this API fails with the error -40 FDSERR_BUFFER_SIZE, the buffer
size is too small and BufferPtrpoints to a null string.

NBytesPtd input/output

Input Pointer to the length of the buffer where the names are stored.
This value must be less than or equal to 60,000.

Remarks

Error Conditions

Examples

Output
When this API has completed successfully, the data in the
location pointed to by NBytesPtris replaced by the actual length
of the data returned.

If this API fails with the error -40 FDSERR_BUFFER_SIZE,
the buffer size is too small; NBytesPtrspecifies the correct
size of BufferPtrrequired to hold all of the names returned.

Flag & input
Used to specify which names are returned from the specified directory.
Valid values are:

FDS_FILE_FILE_NAMES
Return file names only. This value is the default.

FDS_FILE_DIRECTORY_NAMES
Return directory names only.

The file names are returned in BufferPtras a series of null-terminated strings.
The file names are not fully qualified. The sort order of the returned file names is
determined by the underlying operating system. Specifying
FDS_FILE_FILE_NAMES and FDS_FILE_DIRECTORY_NAMES returns all

names contained in the directory. The specia

directory) and 6...06 (previous directory)

The last file name is terminated by two null characters, indicating the end of the
last file name string and the end of the list of file names.

Because files can be created, deleted, renamed, and copied within a directory
at any time, subsequent calls to FdsGetFileNames() can return different
results.

FdsGetFileNames() returns the following values:

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_IO

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-350 FDSERR_NODE_NOT_FOUND

-410 FDSERR_OVERFLOW

This example obtains the list of file names that exist in directory D:\MYDIR.
#include <stdio.h>

#include <string.h>

#include <fds/fds.h>

#include <fds/defs.h>

ar

#include <fds/file.h>
#include <fds/errno.h>

long rc; /I Return from API Call
const char * DirNamePtr = "d\mydir"; // Pointer to directory

char Buffer[500] [/ Buffer for File Names
unsigned int NBytes = sizeof(Buffer); // Size of buffer

unsigned int Flag = 0; Il File names or directories

int entry_start = 0; I byte entry stats

int entry_length = 0; I length of current entry

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
I
/I Set flag for API to get a list of file names in directory
1
Flag = FDS_FILE_FILE_NAMES;
I
/I Call FdsGetFileNames API to get a list of files
1
rc = FdsGetFileNames(DirNamePtr,
Buffer,
&NBytes,
Flag);
printf("FdsGtFileNames completed with return
code = (%d)n",

rc);

I
/I Find and output each entry
1
for (5;)
{

I

// How long is the next entry to output

Il (entry_start is initially 0)

)

entry_length = 1 + strlen(&Buffer[entry_start]);

/I If the length of the entry is less than 2, exit this loop

if (2 > entry_length)

break;

)
[/l Output the entry
I
printf(" --> (%9)n", &Buffer[entry_start]);
)

/I Increment entry_start to the beginning of the next entry
I
entry_start += entry_length;
}
}/lend if
else
{

I else process errors

}

FdsQueryFileSysteminfo()

Purpose
Query the size of a disk and the amount of space available on the disk.

Syntax

long FdsQueryFileSysténfo(const chaFileSystemIDunsigned long FotalUnits
unsigned long AvailUnits unsigned long
*UnitSizé;

Parameters

FileSystemIDd input Pointer to the name of the disk. FileSystemIDis a drive
specification, such as C:. The string can contain a role name or node ID.

TotalUnitsd output
Pointer to the location where the total units of space on the disk are
stored.

AvailUnitsd output
Pointer to the location where the total available units of space on the
disk are stored.

UnitSized output
Pointer to the location where the size of a unit (in bytes) is stored.

Remarks

This API returns the size of a disk and the amount of available space in units.
It also returns UnitSize which is the size of each unit in bytes.

Error Conditions

FdsQueryFileSysteminfo() returns the following values:
-10 FDSERR_ACCESS

-90 FDSERR_DISK

-190 FDSERR_FILE_NAME

-260 FDSERR_I0O

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples

This example queries the D drive, and returns the total space and the
available space on that drive.

#include <stdio.h>

#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defd>

#include <fds/errno.h>
longrc; // Return from API call

char FileSystemID[3] = "d:"; // File system ID
unsigned long TotalUnits; // Total number of units
unsigned long AvailUnits; // Number of available units
unsigned long UnitSize; // Size of atim bytes)

/I Initialize DDS. Could use FdsInit2() instead of FdslInit()
/I If initialization was successful
if (rc == FDS_SUCCESS)

{
1
/I Call FdQueryFileSysteminfo to get the size of the D: drive
// and the amount of space that is currently available on the // disk
1
rc = FdsQueryFileSystenmi(fileSystemID, &TotalUnits,
&AvailUnits, &UnitSize);
printf("FdsQueryFileSystemInfo completed with
return code = (%dn",
rc);
1
/I Output the disk characteristics
1
printf("Disk (%s) \n"
" --> Total Space = %dK \n"
" --> Available Space = %dK \n"
" --> %% Available Space = %d%% \n",
FileSystemID,
TotalUnits*UnitSize/1024,
AvailUnits*UnitSize/1024,
AvalUnits*100/TotalUnits);
}/ end if
else
{
/I else process errors
}

FdsRemoveDir()

Purpose

Remove a directory.
Syntax

#include <fds/file.h>

long FdsRemoveDir(const chddifName;
Parameters

DirNamed input
A string containing the name of the directory to be deleted. The string
can contain logical names, but must resolve to a retail path specification.

Remarks

Error Conditions

Examples

See fAiFil e Names and Queue Nameso for

The directory specified by DirNameis deleted. A directory must be empty before
it can be deleted.

FdsRemoveDir() returns the following values:
-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

This example removes a directory from the D drive.

#include <stdio.h>

#include <fds/fds.h>

#incude <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API call
char DirName[50] = "dAmydir"; // Directory name

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdslnit();

/I If initialization wassuccessful

if (rc == FDS_SUCCESS)

{
1
/I Call FdsRemoveDir API to remove the directoryriiydir”
1
rc = FdsRemoveDir(DirName);
printf("FdsRemoveDir completed with return code = (%d).rc);

}/ end if

else

Il else process errors

}

mor ¢

FdsRenamekFile()

Purpose
Rename a file.

Syntax

#include <fds/file.h>

long FdsRenameFile(const ch&il&Name const char NewFileNamg

Parameters

FileNamed input
A string containing the name of the file to rename. The string can
contain logical names, but must resolve to a retail path specification.
See fAiFile Names and Queue NamesoOo for mor e

NewFileNamed input
A string containing the new name of the file. The string can contain logical
names, but must resolve to a retail pat h
and Queue Neom:mfermatibno

Note: The value specified for NewFileNamecannot be a name that
was used for a distributed directory or a directory that contained
distributed files, even if that directory no longer exists.

Remarks

The name of the file specified by FileNameis changed to NewFileName If you
are renaming a file from one drive to another drive, the file is localized (if
distributed) regardless of the value specified by DistRenamedFile keyword.

The rename operation itself is managed by the underlying operating system. You
cannot rename a file to a different node. For example, you cannot rename a file
that exists on the primary distributor to a new name on a subordinate node.

Error Conditions

FdsRenameFile() returns the following values:
-10 FDSERR_ACCESS
-170 FDSERR_EXISTS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_10
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples

This example renames a file.

#include <stdio.h>

#include <fds/file.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call

char OldFiledime[50] = "dk\mydin\myoldfile"; / Old File Name

char NewFileName[50] = "tkmydin\mynewfile"; // New File Name

/I Initialize DDS. Could use FdslInit2() instead of Fdslnit()

rc = FdsInit();

/I If initialization was successful

if (rc == FDS_SUCCESS))

{
I
/I Call FdsRenameFile API to renama ftdzdin myoldfile” to
/I "d: \mydinmynewfile"
I
rc = FdsRenameFile(OléName, NewFileName);
printf("FdsRenameFile completed with return code = (%ad).

rc);

} I end if
else

{

/I else process errors

}

FdsRestrictFile()

Purpose
Restrict access to a file.
Syntax
#include <fds/file.h>
long FdsRestrictFile(constar *FileNamég;
Parameters
FileNamed input
A pointer to a string containing the name of the file for which access is to
be restricted. The string can contain a logical name, but it must resolve to
a retail path specificate oMamese fidn | mo MNe
information.
Remarks

This API closes all open instances of the specified file that were opened
through DDS APIs. It does not close open instances of the specified file that
were opened directly by calls to the operating system.

Any attempt to use an existing file handle for the specified file will return -222

FDSERR_HANDLE_FORCED_CLOSED.Any new attempts to open the file
will return -10 FDSERR_ACCESS. However, you can still rename the file
using FdsRenamekFile() or delete the file using FdsDeleteFile().

Error Conditions

FdsRestrictFile() returns the following values:
-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples

This example restricts access to a file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API call
char FileName[50] = "dimydiA\myfile"; // File name
/I Initialize DDS. Could use FdsInit2() instead of Fdslnit()
rc = Fdslnit();
/I If initialization was successful
if (rc == FDS_SUCCESS)
{
I

/I Call FdsRestrictFile API to restrict access tonigidin myfile™
I
rc = FdsRestrictFile(FileName);
printf("FdsRestrictFile completed with return code = (%d).rc);
}/lend if
else

{

I else process errors

}

FdsSetFileAttributes()

Purpose
Set the date and time attribute and the read/write attribute of a file.

Syntax

#include <fds/file.h>

long FdsSetFileAttributes(const ch&iifeName
FDS_DATE_TIMBé&teTime
int Flags;

Parameters

FileNamed input
Specifies the name of the file for which the attributes should be set.
The string can contain logical names, but must resolve to a retail path
specification. See AFil e Names and Queue
information.

DateTimei input
Changes the last modification date and time of the file.
Flagsd input
Specifies the read/write attribute and whether you want to change the

last modification date/time for the specified file. Also indicates whether
the attributes are being set for a file or a directory.

The valid values are:

FDS_FILE_ATTRIBUTE_READ_ONLY
Specifies that the file can be read but cannot be modified.

FDS_FILE_ATTRIBUTE_READ_WRITE
Specifies that the file can be read and modified.

FDS_FILE_ATTRIBUTE_DATE
Specifies that the last modified date for the file should be set.

FDS_FILE_ATTRIBUTE_TIME
Specifies the last modified time for the file should be set.

FDS _FILE_ATTRIBUTE_DIRECTORY
Specifies that the attributes are being set for a directory. The
name specified by FileName must be a valid directory. If
FDS_FILE_ATTRIBUTE_DIRECTORY is not specified, the
attributes are being set for a file.

Remarks

This API sets the read/write attribute, the last modified date and time attribute,
or both attributes of the file.

The set-file-attributes operation itself is managed by the underlying
operating system.

Flags can be specified in any combination, except that
FDS_FILE_ATTRIBUTE_READ_ONLY and
FDS_FILE_ATTRIBUTE_READ_WRITE cannot both be set in the same API
call.

If FDS_FILE_ATTRIBUTE_DATE is specified, the file date is changed to the date
provided in DateTimelf FDS_FILE_ATTRIBUTE_TIME is specified, the file time is
changed to the time provided in DateTime You may specify both
FDS_FILE_ATTRIBUTE_DATE and FDS_FILE_ATTRIBUTE_TIME in the same
API call.

Error Conditions

FdsSetFileAttributes() returns the following values:
-10 FDSERR_ACCESS
-75 FDSERR_DATE_TIME
-80 FDSERR_DIR_INDICATOR
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples

This example sets the file attributes of D:\myfile.dat to read-only and sets the last
modification date and time.

#include <stdio.h>

#incluce <fds/fds.h>

#include <fds/defs.h>

#include <fds/file.h>

#include <fds/errno.h>

long rc; // Return from API Call
const char * FileName = "tkmyfile.dat"; // File Name

FDS_DATE_TIME DateTime[1]; // Date and time attributes
int Flags = 0; /1 ReadWrite attribute

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1l
/I Set read write attributes to READ ONLY and set date and time
Il
Flags = FDS_FILE_ATTRIBUTE_READ_ONLY |
FDS_FILE_ATTRIBUTEEDAT
FDS_FILE_ATTRIBUTE_TIME;
Il
/I Set date for the file to 9/9/1997
1l
DateTime.Year = 1997,
DateTime.Month = 9;
DateTime.ly = 9;
1l
/I Set time for the file 09:19:19
Il
DateTime.Hour = 9;
DateTime.Minute = 19;
DateTime.Second = 19;
Il

/I Call FdsSetFileAttributes API to set the file's attributes
1
rc = FdsSetFileAttributes(FileName,

&DateTime,

Flags);

printf("Fds®tFileAttributes completed with return code = (%d),

rc);
Y end if
else

Il else process errors

}

FdsUnrestrictFile()

Purpose
Remove access restrictions for a file.

Syntax
#include <fds/file.h>

long FdsUnrestrictFile(const chdfiteNamé;

Parameters

FileNamed input
A pointer to a string containing the name of the file for which you want to
remove access restrictions. The string can contain logical names, but
must resolve to a retail path specificati
Nameso
for more information.

Remarks

This API removes access restrictions that were imposed when FdsRestrictFile()
was invoked.

Error Conditions

FdsUnrestrictFile() returns the following values:
-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples

This example removes file access restrictions.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API call
char FileName[50] = "dmydin\ myfile"; // File name

I Initialize DDS. Could use FdsInit2() insteaddsikit()

rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Call FdsUnrestrictFile API to allow access torigdin myfile"
I
rc = FdsUnrestrictFile(FileName);
printf("FdsUnrestrictFile completed with return code = (%d).

rc);
Y/ end if
else

I else process errors

}

Keyed-File Services

Keyed files are permanent files, stored on DASD, that can be either local or
remote to the application. Access to keyed files is based on a key field situated at
the front of each keyed-file record. All records within a keyed file must have the
same length. An example of a keyed file in the retail industry is the item price-
lookup file.

All keys in a file must be unique and cannot be 0 (zero). If a record is added with
a key field identical to an existing record, the existing record is overlaid by the
new record.

Most DASD devices write physical sectors of 512 bytes. Because DDS has no
protection from system interruptions, such as power line disturbances, a partial
keyed-file record write can occur if the block size is greater than 512 bytes and if
all sectors are not contiguous on disk. Ensure that the block size you use is 512
bytes to eliminate any possibility of this occurrence.

DDS supports keyed files created on a 4690 system. Keyed files created by DDS
can be moved to an IBM 4690 system if the block size is 512 bytes. In some
cases, file attributes used in the 4690 might not be compatible with the operating
system underlying DDS. Generally, transporting the keyed file across a network
connecting the 4690 system and DDS will correct attribute bit irregularities.

The APIs provided by File Services for keyed-file manipulation are:

FdsCloseKeyedFile() o Close a keyed file or write contents to disk
FdsCreateKeyedFile() 0 Create a new keyed file FdsDeleteKeyedRecord()

0 Delete arecord from a keyed file FdsOpenKeyedFile() 6 Open an
existing keyed file FdsReadKeyedRecord() & Read a record from a keyed
file FdsReleaseKeyedRecord() 0 Release a lock on a keyed file record
FdsWriteKeyedRecord() o Write a record to a keyed file

Capabilities and Restrictions
These capabilities and restrictions apply to the keyed-file APIs:

1 An application can add records to or delete records from a keyed file, but an
existing keyed file cannot be extended. If you need to increase the size of a
keyed file, the keyed file must be erased and created again. You can copy
the data from the keyed file into a flat file to be reused.

1 You can specify block sizes from 512 to 4,096. The block size must be a
multiple of 512. Block sizes larger than 512 are not protected from partial
writes.

1 Record sizes can range from 1 to 4,092 bytes, but must be at least 4 bytes

less than the block size.

You can lock keyed files at the record level using FdsReadKeyedRecord().

You can lock keyed files at the file level using FdsCreateKeyedFile() or

FdsOpenKeyedFile().

91 Individual records can be locked for update. Locking a record for update
does not block another process from locking another record in the same
block.

1 Keyed-file services maintains statistics for each keyed file. These statistics
are maintained individually for each instance of a distributed keyed file. The
image copy of a keyed file is initialized with the statistics from the prime copy
whenever a full reconciliation of the file is performed. Refer to the IBM
Distributed Data Services/Controller Services Feature for Windows User 6 s
Guide for more information about keyed-file statistics. See Chapter 6. Data
Distribution for more information about image copies, prime copies, and full
reconciliation. See fADistributed Filesdo fo

FdsCloseKeyedFile()

Purpose

Close a keyed file or write the contents of a keyed file to disk.
Syntax

#include <fds/file.h>

long FdsCloseKeyedFile(IdfigeHandleint Flag
Parameters

FileHandl& input
The file handle obtained from FdsOpenKeyedFile()
or FdsCreateKeyedFile().

Flag 8 input

Remarks

Error Conditions

A flag consisting of the following attributes:

CloseTypeindicates the type of close request. Valid values are:

FDS FILE_CLOSE_TYPE_FULL
Close the file. The file handle becomes invalid and all locks on
the file are released. This is the default value.

FDS FILE CLOSE TYPE_FLUSH
Write the contents of the file buffers to disk.

NullDataAreaindicates whether to reset the file before closing it. The
reset of the file will fill all of the data blocks to zeroes. The valid values
are:

FDS FILE _RESET_NO
Do not reset the file. This is the default value.

FDS_FILE_RESET_YES
Reset the data blocks of the file to zeroes before closing it. The
file header remains intact. This value is valid only in combination
with FDS_FILE_CLOSE_TYPE_FULL .

If CloseTypeis FDS_FILE_CLOSE_TYPE_FULL , FileHandlebecomes invalid
and all locks associated with it are released.

If CloseTypeis FDS_FILE_CLOSE_TYPE_FLUSH and the file is distributed with a
frequency of distribute on close, the distribution sequence is initiated as if the file
were closed, though the file is not closed. FileHandleand all locks associated with
it remain valid.

If CloseTypeis FDS_FILE_CLOSE_TYPE_FLUSH and the file is not distributed
or has a distribution frequency of distribute-on-update, no action is taken.

If specified, FDS_FILE_RESET_YES is effective only if all of the
following conditions apply:

 FDS_FILE_CLOSE_TYPE_FULL is specified. If
FDS_FILE_CLOSE_TYPE_FLUSH is specified, -210 FDSERR_FLAG is
returned.

I FileHandle is the only active, open instance of the keyed file.
1 FDS_FILE_ACCESS READ_WRITE was specified when the file was opened.
Except as indicated above, the failure to complete a reset request does not

prevent the file from being closed. FDS_SUCCESS is returned and the reset
failure is logged.

FdsCloseKeyedFile() returns the following values:
-210 FDSERR_FLAG

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

Examples

This example flushes the contents of a keyed file to disk and then closes the file.
#include <stdio.h>

#include <fds/file.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "d\mydin\myfile"; // File name

long FileHandle; I/ Open Keyed File Handle
unsigned int KeySize; Il Key Size

unsigned int RecordSize; // Record Size

int Flag; /I Flag value

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdslnit();

/'f initialization was successful

if (rc == FDS_SUCCESS))

{
I
/I Set flag for FdsOpenKeyedFile API call
1
Flag = FDS_FILE_ ACCESSD RVRITE | FDS_FILE_LOCK_NONE;
I
/I Open existing keyed file "dmydin myfile"
1
rc = FdsOpenKeyedFile(BFandle, FileName, &KeySize,

&RecordSize, Flag);
if (rc == FDS_SUCCESS))
{
1

/I Set flag for FdsCloseKeyedFile API-dalflush the file, lnt not
/I close the file
1

Flag = FDS_FILE_RESET_NO | FDS_FILE_CLOSE_TYPE_FLUSH,;

1

/I Call FdsCloseKeyedFile API to flushigdin myfile"

1

rc = FdsCloseKeyedFile(FileHandle, Flag);

printf("FdsCloseKeyedFilernpleted with return code = (%dh",
rc);

1

/I Set flag for FdsCloseKeyedFile API call to close the file and reset
/I the data blocks of theife to zeros
I

Flag = FDS_FILE_RESET_YES | FDS_FILE_CLOSE_TYPE_FULL;

1

/I Call FdsCloseKeyedFile API to closenigdin myfile"

1

rc = FdsCloseKeyedFile(FileHandle, Flag);

printf("FdsCloseKeyedFile completedtwi
return code =(%d)n", rc);

} I end if
Y}/l end if

else

{

/I else process errors

}

FdsCreateKeyedFile()

Purpose

Syntax

Parameters

Create a new keyed file.

#include <fds/file.h>

long FdsCreateKeyedFile(lorfgileHandlePtrconst char FileName
unsigied intKeySize
unsigned intRecordSize
unsigned inBlockSize
unsigned londNumBlocks
unsigned londRandDivisqr
unsigned intChainThreshold
int Flag;

FileHandlePtrd output
Pointer to the location where the file handle is stored. This value is
required for all other Keyed-file APIs. This is not the operating-system file
handle.

The file handle returned has read/write access to the file. The file should
be closed and reopened with FdsOpenKeyedFile() if read-only access is
required.

FileNamed input
A string specifying the file to open. The string can contain logical names,
but must resolve to a retail pat h

Queue Nameso for more information.

KeySized input
The key size (in bytes) for the file. This value must be greater than
zero, and less than or equal to RecordSize

RecordSized input
The record size (in bytes) for the file. This value must be greater than
or equal to KeySizeand less than or equal to BlockSizeminus 4.

BlockSized input
The block size (in bytes) for the file. This value must be a multiple of 512,
from 512 to 4,096. It must also be greater than or equal to RecordSize
plus
4.

speci fi

NumBlocksd input
The number of blocks in the file. This value must be greater than or
equal toRandDivisor

This value should be large enough for the maximum number of records
that will be added to the keyed file plus 20 percent for free space.
Calculate this value by dividing the maximum number of records by the
number of records per block, and then adding 20 percent.

The smallest allowed number of blocks is 1.

RandDivisord input
The randomizing divisor for the file. This value must be less than or
equal toNumBIlocks If this value is 0 (zero), DDS calculates a default
value.

Prime numbers are effective randomizing divisors. For example, you
might choose the largest prime number that is less than or equal to the
total number of blocks in the keyed file.

ChainThreshold input
The chaining threshold for the file. This value must be less than
NumBIlocks If a new record is added to a keyed file that causes a chain
greater than this value to be created in the file, an informational message
is logged to indicate this event. Specifying 0 (zero) for this value
suppresses the logging of these messages.

Flag & input
A flag consisting of the following attributes:

FileExistActiorindicates the action to take if FileName already exists.
Valid values are:

FDS_FILE_EXIST_FAIL
The API fails. This is the default value.

FDS_FILE_EXIST_REPLACE
Replace the existing file.

FileLockindicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE
Request exclusive access to the file. No other process can
access the file for reading or writing.

FDS_FILE_LOCK_SHARED
Request shared access to the file. No other process can access
the file for writing, but other processes can access the file for
reading.

FDS_FILE_LOCK_NONE
Request no lock for the file. Other processes can access the file
for reading and writing. This is the default value.

HashingAlgorithnmdicates the hashing algorithm to be used. See the

IBM Distributed Data Services/Controller Services Feature for Windows
Us er 6 s foGmore thi@rmation about hashing algorithms. Valid values
are:

Remarks

FDS_FILE_HASH_POLYNOMIAL
Polynomial algorithm. This is the default value.

FDS_FILE_HASH_XOR
XOR rotation algorithm.

FDS_FILE_HASH_FOLDING
Simple folding algorithm.

A new keyed file with the name you specified for the FileName parameter is
created. The file size is determined by the values of BlockSizeand
NumBlocks

If a file with the same name already exists, the existing file is replaced or -
170 FDSERR_EXISTS is returned, depending on the value of
FileExistAction

The data blocks in the file are initialized to zeros. This process can take a long
time for large files.

Error Conditions

Examples

FdsCreateKeyedFile() returns the following values:
-10 FDSERR_ACCESS

-30 FDSERR_BLOCK_SIZE

-50 FDSERR_CHAIN_THRESH

-100 FDSERR_DISK_FULL

-170 FDSERR_EXISTS

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG

-260 FDSERR_IO

-290 FDSERR_KEY_SIZE

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE

-390 FDSERR_NUM_BLOCKS

-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND
-480 FDSERR_RAND_DIV

-490 FDSERR_REC_SIZE

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

This example creates a keyed file.

#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>

#include <fds/defs.h>
#incluce <fds/errno.h>

long rc; /I Return from API Call
char FileName[50] = "dYmydin\myfile"; // File name

long FileHandle; /I Open Keyed File Handle
unsigned int KeySize = 7, Il Key Size

unsigned int RecordSize = 50; /l Record Size

unsignednt BlockSize = 512; /I Block Size

unsigned long NumBIlocks = 1000; /I Number of Blocks
unsigned long RandDivisor = 0; /I Randomizing Divisor
unsigned long ChainThreshold = 4; /I Chaining Threshold
int Flag; Il Flag value

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdsinit();

/I'If initialization was successful
if (rc == FDS_SUCCESS))
{

1
/I Set flag for FdsCreateKeyedFile API call
I Flag = FDS_FILE_EXIST_REPLACE |
FDS_FILE_LOCK_EXCLUSIVE |
FDS_FILE_HASH_POLYNOMIAL;

1
/I Call FdsGrateKeyedFile API to create keyed file faydin myfile".
1

printf("FdsCreateKeyedFile completed with return code =
(%d)\n", rc);

I end if

else

{ /I else proess errors }

FdsDeleteKeyedRecord()

Purpose
Delete a record from a keyed file.

Syntax

#include <fds/file.h>

long FdsDeleteKeyedRecord(IdriteHandlevoid *KeyPtr unsigned inKeySize

Parameters

FileHandled input
The file handle obtained from FdsOpenKeyedFile() or
FdsCreateKeyedFile().

KeyPtrd input
A pointer to the key of the record to delete. The specified key must not be
null (must not contain all zeros).

KeySized input The size of the key pointed to by KeyPtr. This value must equal
the key size set by FdsCreateKeyedFile() or obtained from
FdsOpenKeyedFile().

Remarks

The record containing the key specified by KeyPtris deleted from the file. The -10
FDSERR_ACCESS error code is returned if the record is locked.

Error Conditions

FdsDeleteKeyedRecord() returns the following values:
-10 FDSERR_ACCESS
-70 FDSERR_CORRUPT
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-270 FDSERR_KEY
-280 FDSERR_KEY_NOT_FOUND
-290 FDSERR_KEY_SIZE
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-530 FDSERR_ROLE_CHANGE

Examples

This example removes a record from a keyed file.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50F "d\\mydin\myfile”; // File name

long FileHandle; /I Open Keyed File Handle
unsigned int KeySize; /I Key Size

unsigned int RecordSize; I/l Record Size

int Flag; /Il Flag value

void* pRecord; /! Pointer to Record

char Buffer[100] = "Rmrd1"; // Record to delete

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdsinit();

/I 1f initialization was successful

if (rc == FDS_SUCCESS))

{
1
I/ Set flag br FdsOpenKeyedFile API call
1
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
1
/I Open existing keyed file "dmydiA myfile"
I

rc = FdsOpenKeyedFile(&FileHanBIlgEName, &KeySize,
&RecordSize, Flag);
if (rc == FDS_SUCCESS)
{
I
/I Store key of record to delete in pRecord
1
pRecord = (void *) Buffer;
I
/I Delete record that has key = "Record1"
1
rc = FdsDeleteKeyedRecord(FileHandle, pRecey&ike);
printf("FdsDeleteKeyedRecord completed with return code = {#gYc);
Y/ end if
Y/ end if
else

{

I else process errors

}

FdsOpenKeyedFile()

Purpose
Open an existing keyed file.
Syntax
#include <fds/file.h>
long FdsOpenKeyedFla{g *FileHandlePtr, const char *FileName, unsigned int *KeySizePtr,
unsigned int *RecordSizePtr, int Flag);
Parameters

FileHandlePtrd output
Pointer to the location where the file handle is stored. This value is
required for all other Keyed-file APIs. This is not the operating-system file
handle.

FileNamed input
A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specifi
Queue Nameso fationn more inform

KeySizePtrd output
Pointer to the location where the key size (in bytes) for the file is stored.

RecordSizePtrd output

Pointer to the location where the record size (in bytes) for the file is stored.
Flag 8 input

A flag consisting of the following attributes:

FileAccessindicates whether write access to the file is requested.
Valid values are:

FDS_FILE_ACCESS_READ_ONLY
Request read-only access to the file. This is the default value.

FDS_FILE_ACCESS_READ_WRITE
Request read and write access to the file.

FileLockindicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE
Request exclusive access to the file. No other process can
access the file for reading or writing.

FDS_FILE_LOCK_SHARED
Request shared access to the file. No other process can access
the file for writing, but other processes can access the file for
reading.

FDS_FILE_LOCK_NONE
Request no lock for the file. Other processes can access the file
for reading and writing. This is the default value.

Remarks

The file specified by FileName is opened with the attributes specified by Flag.
The system attempts to verify that the file is a valid keyed file.

Error Conditions

This example removes a record from a keyed file.
#include <stdio.h>

#indude <fds/fds.h>

#include <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "dYmydin\myfile”; // File name

long FileHandle; /I Open Keyed File Handle
unsigned int KeySize; Il Key Size

unsigned int RecordSize; I/l Record Size

int Flag; Il Flag value

void* pRecord; /! Pointer to Record

char Buffer[100] = "Record1"; // Record to delete

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set flag for FdsOpenKeyedFile API call
I
Flag = FDSILFE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
I
/I Open existing keyed file "dmydin myfile"

I
rc = FdsPenKeyedFile(&FileHandle, FileName, &KeySize, &RecordSize, Flag);
if (rc == FDS_SUCCESS)
{
1l
/I Store key of record to delete in pRecord
1
pRecord = (void *) Buffer;
1l
/I Delete record that has key = "Record1"
1
rc =FdsDeleteKeyedRecord(FileHandle, pRecord, KeySize);
printf("FdsDeleteKeyedRecord completed with return code = {#6dYc);
Y end if

}/ end if

else

{

I else process errors

}
FdsReadKeyedRecord()
Purpose

Read a record from a keyed file.
Syntax

#include <fds/file.h>

long FdsReadKeyedRecord(IdfigHandlevoid *BufferPtr unsigned inKeySizeunsigned int

*RecordSizeRtmt Flag;

Parameters

FileHandled input
The file handle obtained from FdsOpenKeyedFile()
or FdsCreateKeyedFile().

BufferPtrd input/output

Input A pointer to the key of the record to read. The specified key
must not be null (must not contain all zeros).

Output
A pointer to the record containing a matching key.

KeySized input The size (in bytes) of the key pointed to by BufferPtr This value
must equal the key size set by FdsCreateKeyedFile() or obtained from
FdsOpenKeyedFile().

RecordSizePtrd input/output

Input A pointer to the maximum size (in bytes) of the record to read.

Remarks

Error Conditions

This value must be greater than or equal to the record size set by
FdsCreateKeyedFile() or obtained from FdsOpenKeyedFile(). This
value must also be less than or equal to the size of the allocated
space pointed to by BufferPtr

Output
If the call succeeds, a pointer to the size (in bytes) of the record
that was read. If the call fails and the error code is -490
FDSERR_REC_SIZE,a pointer to the size (in bytes) of the record
that could not be read. The value will be equal to the record size

set by FdsCreateKeyedFile() or obtained from
FdsOpenKeyedFile() in both of these cases.

If the call fails and the error code is not -490
FDSERR_REC_SIZE, the output value is undefined.

Flag & input

A flag consisting of the following attribute:
RecordLockindicates whether to lock the record. Valid values are:

FDS_FILE_RECORD_LOCK_NO
Do not lock the record. This is the default value.

FDS_FILE_RECORD_LOCK_YES
Lock the record. Other processes can continue to read the
record, but cannot update it.

If RecordLockis FDS_FILE_ RECORD_LOCK_YES, the record is locked until
an FdsWriteKeyedRecord() request with RecordUnlockequal to
FDS_FILE_RECORD_UNLOCK_YES is issued, or until the keyed record is
released via an FdsReleaseKeyedRecord() request. A record can be read by
other processes while it is locked, but it cannot be updated.

FdsReadKeyedRecord() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-70 FDSERR_CORRUPT
-210 FDSERR_FLAG
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-270 FDSERR_KEY
-280 FDSERR_KEY_NOT_FOUND
-290 FDSERR_KEY_SIZE
-350 FDSERR_NODE_NOT_FOUND
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE
-560 FDSERR_SEQUENCE

Examples

This example removes a record from a keyed file.
#include <stdio.h>

#include<fds/fds.h>

#include <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "d\mydin\myfile"; // File name

long FileHandle; I/ Open Keyed File Handle
unsigned int KeySize; Il Key Ste

unsigned int RecordSize; // Record Size

int Flag; Il Flag value

void* pRecord; /I Pointer to Record

char Buffer[100] = "Recordl1"; // Record to delete

/I Initialize DDS. Could use FdsInit2() instead of Fdslnit()

rc = Fdslnit();

/I lf initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set flag for FdsOpenKeyedFile API call
1
Flag = FDS_1H_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
I
/I Open existing keyed file "dmydin myfile"
1
rc = FdsOenKeyedFile(&FileHandle, FileName, &KeySize,

&RecordSize, Flag);
if (rc == FDS_SUCCESS))
{
I
/I Store key of record to delete in pRecord
)
pRecord = (void *) Buffer;
I
/I Delete record that has key = "Record1"
)
rc = FdsDeleteKeyedRed¢FileHandle, pRecord, KeySize);
printf("FdsDeleteKeyedRecord completed with return
code = (%d)n", rc);
}/end if
}/lend if
else

{

/I else process errors

}

FdsReleaseKeyedRecord()

Purpose
Release a lock on a record in a keyed file.

Syntax

Parameters

Remarks

Error Conditions

Examples

#include <fds/file.h>

long FdsReleaseKeyedRecord(I6ilgHandlevoid *KeyPtr unsigned iKeySizg

FileHandled input
The file handle obtained from FdsOpenKeyedFile() or
FdsCreateKeyedFile().

KeyPtrd input
A pointer to the key of the record to release. The specified key must not be
null (must not contain all zeros).

KeySized input The size of the key pointed to by KeyPtr. This value must equal
the key size set by FdsCreateKeyedFile() or obtained from
FdsOpenKeyedFile().

The lock on the record containing the key specified by KeyPtris released. The lock
must have been previously established by FdsReadKeyedRecord().

FdsWriteKeyedRecord() returns the following values:
-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-70 FDSERR_CORRUPT

-180 FDSERR_FILE_FULL

-210 FDSERR_FLAG

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO

-270 FDSERR_KEY

-290 FDSERR_KEY_SIZE

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

-490 FDSERR_REC_SIZE

-530 FDSERR_ROLE_CHANGE

-560 FDSERR_SEQUENCE

This example releases a locked record.

#include <stdio.h>

#include <fds/file.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "dimydin\myfile"; // File name
long FileHandle; /I Open Keyed File Handle
unsigned int KeySize;/l Key Size

unsigned int RecordSize; /I Record Size

int Flag; I/l Flag value

void* pRecord;// Pointer to Record

char Buffer[100] = "Record1"; // Recordto release
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set flag for FdsOpenKeyedAPI call
I
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
1
/I Open existing keyed file "tmydinmyfile"
I
rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize,

&RecordSize, Flag);
if (rc == FDS_SUCCESS)
{
1

/I Set flag for FdsReadKeyedRecord API call to lock the record
I

Flag = FDS_FILE_RECORD_LOCK_YES;
I
/I Store key of record to lock in pRecord
)
pRecord = (void *) Buffer;
I
/I Read record that has key = "Recordl"
)
rc = FdsReadKeyedRecord(FileHandle, // File Handle from Open
pRecord, // Pointer to Record
KeySize, /] Key size
&RecordSize//Record size
Flag); // Flag value
if (rc '= FDS_SUCCESS)
{
printf("FdsReadKeyedRecord failed (%d).rc);
return(-1);
}
I
/I Store key of record to unlock in pRecord
)
pRecord = (void *) Buffer;
I
/I Unlock record that has key = "Record1"
)
rc = FdsReleaseKeyedRecord(FileHandle, pRecord, KeySize);
printf("FdsReleaseKeyedRecord completed with return code =\@dx);
I end if
Y end if
else

{

I else process errors

}

FdsWriteKeyedRecord()

Purpose

Syntax

Parameters

Remarks

Write a record to a keyed file.

#include <fds/file.h>

long FdsWriteKeyedRecord(loRgeHandlevoid *RecordPtr
unsigned inKeySize
unsigned inRecordSize
int Flag);

FileHandled input
The file handle obtained from FdsOpenKeyedFile()
or FdsCreateKeyedFile().

RecordPtrd input
A pointer to the record to write. The first KeySize bytes of the record must
contain a non-null key (must not consist of all zeros).

KeySized input
The size (in bytes) of the key at the front of the record pointed to by
RecordPtr This value must equal the key size set by
FdsCreateKeyedFile() or obtained from FdsOpenKeyedFile().

RecordSized input
The size (in bytes) of the record pointed to by RecordPtr This value
must equal the record size set by FdsCreateKeyedFile() or obtained
from FdsOpenKeyedFile().

Flag & input
A flag consisting of the following attribute:

RecordUnlockindicates whether to unlock the record after the write.
Valid values are:

FDS_FILE_ RECORD_UNLOCK_NO
Do not unlock the record. This is the default value.

FDS_FILE_RECORD_UNLOCK_YES
Unlock the record after the write. A lock on the record must
have been previously established using
FdsReadKeyedRecord().

If the record specified by RecordPtrcontains a key that already exists in a record
in the file, the record in the file is replaced with the new record. If the existing
record is locked, FDS_FILE_ RECORD_UNLOCK_YES must be specified. If the
existing record is not locked, you do not have to specify a value
(FDS_FILE_RECORD_UNLOCK_NO is the default).

If the record specified by RecordPtrcontains a key that does not already exist

in a record in the file, the new record is added to the file.

Error Conditions

Examples

FdsWriteKeyedRecord() returns the following values:
-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-70 FDSERR_CORRUPT

-180 FDSERR_FILE_FULL

-210 FDSERR_FLAG

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO

-270 FDSERR_KEY

-290 FDSERR_KEY_SIZE

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

-490 FDSERR_REC_SIZE

-530 FDSERR_ROLE_CHANGE

-560 FDSERR_SEQUENCE

This example updates a record in a keyed file.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/file.h>

#include <fds/defs.h>

#include <fds/errno.h>

long rc; /l Return from API Call
cha FileName[50] = "dimydiA\myfile"; // File name

long FileHandle; // Open Keyed File Handle
unsigned int KeySize; /I Key Size

unsigned int RecordSize; // Record Size

int Flag; Il Flag value

void* pRecord; I/ Pointer to Record

cha Buffer[100] = "Recordl1"; // Key of record to write

char Buffer2[100] = "Record1l New Record 1 data"// New Record
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdslnit();

/1 f initialization was successful

if (rc == FDS_SUCCESS

{

1

/I Set flag for FdsOpenKeyedFile API call

I

Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_SHARED;

1

/I Open existing keyed file "dmydin myfile"

1

rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize, &Recolatpize, F

if (rc == FDS_SUCCESS))

{
1
/I Set flag for FdsReadKeyedRecord API call to lock the record
1
Flag = FDS_FILE_RRD_LOCK_YES;
1

/I Store key of record to read in pRecord
1
pRecord = (void *) Buffer;
I
/I Read record that has key = "Recordl"
1
rc = FdsReadKeyedRecord(FileHandle, // File Handle from Open
pRecord, // Pointer to Record
KeySize, /| Keyize
&RecordSize, // Record size
Flag); // Flag value
if (rc = FDS_SUCCESS)
{

printf("FdsReadKeyedRecord failed (%d).rc);

return(-1);
}
I
/I Call FdsWriteKeyedRecord to write "Record1" back to the file after
/I changing the data in the record. The read was done with lock so
/I the write must be done with unlock.
1

Flag = FDS_FILE_RECORD_UNLOCK_YES;
1
/I Store the new record in pRecord
I
pRecord = (void *) Buffer2;
1
/I Call FdsWriteKeyedRecord API
I
rc = FdsWriteKeyedRecord(FileHandle, pReceybike, RecordSize, Flag);
printf("FdsWriteKeyedRecord completed with return code = (#d)rc);
} I end if
Y/ end if
else

{

/I else process errors

}

Sequential File Services

Sequential files are composed of a sequence of records of variable lengths.
Records are read in order from the beginning of the file to the end. New records
are added to the end of the file. An existing record cannot be deleted, replaced, or
removed from the file.

Sequential files are stored on DASD as contiguous data with self-defining
records. Each record consists of a 4-byte record header followed by user data.
The first 2 bytes of the record header contain a delimiter that is used only in
error-recovery situations. The hex value of the delimiter is hex BEEF. The
second 2 bytes of the record header contain the length of the subsequent user
data. This structure is summarized in the following table:

Table 1. Sequential-File, Record-Header Format

Description Size Notes
Delimiter 2 bytes Hexidecimal value is hex BEEF.

Length of user | 2 bytes Range is from 1 to 49 152.
data

User data User-defined (must be | No content restrictions.
within above range)

The APIs provided by File Services for sequential file manipulation are:
FdsCloseSeqFile() 6 Close a sequential file

FdsFindNextSegRecord() & Move the file pointer to the next valid record in a
sequential file

FdsOpenSeqgFile() 8 Open or create a sequential file

FdsReadSeqRecord() 0 Read arecord from a sequential file
FdsReturnSeqgFilePos() & Return the file position indicator for a sequential file
FdsSeekSeqFilePos() 0 Seek to a point in a sequential file
FdsWriteSegRecord() & Append a record to a sequential file

FdsCloseSeqFile()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Examples

Close a sequential file.

#include <fds/file.h>

long FdsClasSeqgFile(longileHandIg

FileHandled input
The file handle obtained from FdsOpenSeqFile().

FileHandlebecomes invalid and any locks on the file are released.

FdsCloseSeqFile() returns the following values:
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED

This example closes a sequential file.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call

long FileHamlle; /I File Handle returned from Open
const char * FileName = "tkitemrec.dat"; // Name of file to open
int Flag; // Flag value

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set Flag for FdsOpenSegFile API call
1
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESSDREALY |
FDS_FILE_LOCK_NONE;

1
/I Open "d\itemrec.dat"
I
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS))
{
)
// Call FdsCloseSegFile API to closkit&mrec.dat"
I
rc = FdsCloSfeqgFile(FileHandle);
printf("FdsCloseSegFile completed with return code = {¥t)rc);
}/ end if

Y end if

else

{

I else process errors

}

FdsFindNextSeqgRecord()

Purpose
Move the file pointer to the next valid record in a sequential file
Synta x
#include <fds/file.h>
long FdsFindNextSeqRecord(ldfiggHandlg
Parameters

FileHandled input
The file handle value obtained from FdsOpenSegFile().

Remarks

Error Conditions

Examples

The file pointer is advanced to the next valid record in the file, beginning at the
current position of the file pointer. The file pointer is advanced, even if it is located
on a valid record when the call is made, unless a valid record cannot be found.

Use this API for error recovery when the File Services component or the caller
detects a damaged record in a file.

FdsFindNextSegRecord() returns the following values:
-10 FDSERR_ACCESS

-160 FDSERR_EOF

-220 FDSERR_HANDLE

-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

This example moves the file pointer to the next valid record in a sequential file.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/file.h>

#include <fds/errno.h>

long rc; /l Return from API Call

long FileHandle; /I File Handle returned from Open

const char * FileName = "titemrec.dat"; // Name of file to create
int Flag; /I Flag value

char Record[500] ="; // Record to read

unsigned int RecordSize = sizeof(Recordl)Size of Record

/l Initialize DDS. Could use FdslInit2() instead of FdgInit(

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Set Flag for FdsOpenSeqgFile API call
I
Flag = (unsigned int) FDS_FILE_EXIST_OPEN |
(unsigned int) FDS_FILE_ACCESS_READ_ONLY |
(unsigned int) FDS_FILE_LOCK_SHARED;

I
/I Open "d\itemrec.dat"
1
rc = FdsOpenSeqgFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS))
{
I
/I Call FdsFindNextSeqRecorBlAo advance the position of the
// file pointer in the file to the next record
I
/I (e.qg. if the file pointer currently points to the first record
/l'in the file, after calling the FdsFindNextSegRecord API, the
/I file pointer will point to the secondecord in the file)

I
rc = FdsFindNextSeqRecord(FileHandle);
printf("FdsFindNextSeqRecord completed with return code = {¥%4dYc);
if (rc == FDS_SUCCESS)
{
/l Read the second recorin the file
rc = FdsReadSeqRecord(FileHandle, (void*) Record, &RecordSize);
Y end if
}/ end if
Y end if
else
{

I else process errors

}

FdsOpenSeqFile()

Purpose

Open or create a sequential file.
Syntax

#include <fds/file.h>

long FdsOpenSé&dge(long FileHandlePtrconst char FileNameint Flag);
Parameters

FileHandlePtrd output
Pointer to the location where the file handle is stored. This value is
required for all the other Sequential-file APIs. This handle is not the
operating system file handle.

FileNamed input
A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specifi
Queue Nameso for more information.
Flag 8 input

A flag consisting of the following attributes:

FileExistActionindicates the action to take if FileName already exists.
Valid values are:

FDS_FILE_EXIST_OPEN
Open the existing file. This is the default value.

FDS_FILE_EXIST_REPLACE

Replace the existing file. FDS_FILE_ACCESS_READ_WRITE
must also be specified if this value is specified.

FileAccessindicates whether write access to the file is requested.
Valid values are:

FDS_FILE_ACCESS_READ_ONLY

Remarks

Error Conditions

Examples

Request read-only access to the file. This is the default value.

FDS_FILE_ACCESS_READ_WRITE
Request read and write access to the file.

FileLockindicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE
Request exclusive access to the file. No other process can
access the file for reading or writing.

FDS_FILE_LOCK_SHARED

Request shared access to the file. No other process can access
the file for writing, but other processes can access the file for

reading.

FDS_FILE_LOCK_NONE
Request no lock for the file. Other processes can access the
file for reading and writing. This is the default value.

A file named FileNameis opened with the attributes specified by Flag. If the file
exists, it is either opened or replaced, depending on the value of FileExistActionf
the file does not exist and FDS_FILE_ACCESS_READ_WRITE is specified, a
new file is created. Otherwise, an error is returned if the file does not exist.

File Services does not attempt to validate the contents of an existing file if
an existing file is opened.

The file pointer is placed at the first record in the file.
File Services does not implement access control for file locking and sharing.

These features are implemented by the operating system and file system based
on the Flag parameter.

FdsOpenSeqgFile() returns the following values:
-10 FDSERR_ACCESS
-70 FDSERR_CORRUPT
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

This example opens a sequential file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include<fds/errno.h>

long rc; // Return from API Call

long FileHandle; // File Handle returned from Open
const char * FileName = "tkitemrec.dat"; // Name of file to create
int Flag; /I Flag value

/I Initialize DDS. Could use FdslInit2() instead afiit])

rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Set flag for FdsOpenSeqFile API call
I
Flag = FDS_FILE_EXIST_REPLACE |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_SHARED;

I
/I Call FdsOpenSeqgFile API to create/replac&it&mrec.dat"”
I

rc = FdsOpenSeqgFile(&FileHandle, FileName, Flag);
printf("FdsOpenSegFile completed with return code = (%%4)rc);
Y end if
ele
{
/I else process errors

}

FdsReadSegRecord()

Purpose

Syntax

Parameters

Read a record from a sequential file.

#include <fds/file.h>

long FdsReadSeqRecord(ldfiteHandle
void *BufferPtr
unsigned int BufferSizePjr

FileHandled input
The file handle value obtained from FdsOpenSegFile().

BufferPtrd output
A pointer to the location where the record that was read is stored.

BufferSizePtrd input/output

Input A pointer to the maximum size (in bytes) of the record to read.
This value must be less than or equal to the size of the allocated
space pointed to by BufferPtr.

Output If the call succeeds, a pointer to the size (in bytes) of the record
read. The output value is less than or equal to the input value in this
case.

If the call fails and the error code is -40 FDSERR_BUFFER_SIZE, a
pointer to the size (in bytes) of the record that could not be read. The
output value is greater than the input value in this case.

If the call fails and the error code is not -40 FDSERR_BUFFER_SIZE,
the output value is undefined.

Remarks

The record beginning at the current file pointer is read. File Services does
not adjust the file pointer before processing the request.

If the input value of BufferSizeis at least as large as the size of the user-data

portion of the record, the user data is placed in the location specified by

BufferPtr and the output value of BufferSizeis the actual size of the user data.

See ASequenti al File Serviceso for -more info
data portion of the record.

If the input value of BufferSizeis smaller than the size of the user data, -40
FDSERR_BUFFER_SIZE is returned, and the output value of BufferSizeis
the actual size (in bytes) of the user data. The contents of the location
specified by BufferPtrare undefined in this case. You can immediately
attempt to read the record again, indicating a larger value for BufferSize

If the call succeeds, FDS_SUCCESS is returned and the file pointer is advanced
to the next record.

Error Conditions
FdsReadSeqRecord() returns the following values:

-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE
-70 FDSERR_CORRUPT
-160 FDSERR_EOF

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED

Examples

-260 FDSERR_|O
-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

This example reads a record in a sequential file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; /l Return from API Call

long FileHandle; /I File Handle retured from Open

const char * FileName = "thitemrec.dat"; // Name of file to open
int Flag; I/l Flag value

char Record[500] ="; // Record to read

unsigned int RecordSize = sizeof(Record/)Size of Record

// Initialize DDS. Could use FdsInit2@gtéad of Fdsinit()

rc = Fdslnit();

/1 1f initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set Flag for FdsOpenSegFile API call
I
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE;

I
/I Open "d\itemrec.dat"
1
rc = FdsOpenSegFile(&FileHandle, FileName, Flag);
/I'If Open was successful
if (rc == FDS_SUCCESS))
{
I
/I Call FdsReadSeqgRecord API to read the first record ifiléhe
)

rc = FdsReadSeqRecord(FileHandle, (void*) Record, &RecordSize);

printf("FdsReadSeqRecord completed with return code = {#6d)
" --> Record read = (%s) \n", rc,Record);
}/l endif
Y/ end if
else

/I else process errors

}

FdsReturnSeqFilePos()

Purpose

Return the file position indicator for a sequential file.

Syntax

#include <fds/file.h>

long FdsReturnSegFilePos(ldfigHandleunsigned long PositionPty;
Parameters

FileHandled input

The file handle value obtained from FdsOpenSegFile().
PositionPt©® output
A pointer to the location where the file position indicator will be stored.

Remarks

The current position of the file pointer is returned. This value can be used later, via
a call to FdsSeekSeqFilePos(), to return the file pointer to its current position.

Error Conditions

FdsReturnSeqgFilePos() returns the following values:
-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

Examples

This example saves the current file position of a sequential file.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/file.h>

#include <fds/errno.h>

long rc; // Return from API Call

long FileHand?; /I File Handle returned from Open
const char * FileName = "tkitemrec.dat"; // Name of file to open
int Flag; /I Flag value

unsigned long Position = 0; I File position

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = FdsIn{);

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set Flag for FdsOpenSeqgFile API call
I
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE;

I
/I Open "d\itemrec.dat"
I
rc = FdsOenSeqFile(&FileHandle, FileName, Flag);

/I'If Open was successful
if (rc == FDS_SUCCESS))
{
I
/I Call FdsReturnSeqFilePos API to save the current position
/I of the file pointer.
)
/I This call is used in conjunction with the FdsSeekSegFilePos,
/I which will return the file pointer to the saved position.
Il (See FdsSeekSegFilePos() for more information.)
)
rc = FdsRetmSeqFilePos(FileHandle, &Position);
printf("FdsReturnSeqFilePos completed with return code = {#dYc);
Y/ end if
Y/l end if
else

{

I else process errors

}

FdsSeekSegFilePos()

Purpose
Seek to a previously determined point in a sequential file.
Syntax
#include <fds/file.h>
long FdsSeekSeqFilePos(I&ilgHandleunsigned londPositior);
Parameters
FileHandled input
The file handle value obtained from FdsOpenSegFile().
Positiond input
The file position indicator obtained from FdsReturnSeqFilePos(). Position
=11 positions the pointer at the end of the file.
Context
The file pointer is moved to the location specified by Position This value must
have been previously obtained from a call to FdsReturnSeqFilePos() to ensure
correct alignment of the file pointer.
Remarks

FdsSeekSeqFilePos() returns the following values:
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE

Examples

This example seeks to a previously saved position in a sequential file.
#include <stdio.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/file.h>

#include <fds/errno.h>

long rc; // Return from API Call

long FileHandle; /I File Handle returned from Open
const char * FileName = "tkitemrec.dat’; // Name of file to open
int Flag; // Flag value
char Record[500] =", // Record to read
unsigned int RecordSize = sizeof(Record)Size of Record
unsigned long Position = 0; /I File position
/I Initialize DDS. Could use FdslInit2(téasl of FdslInit()

rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Set Flag for FdsOpenSegFile API call
I
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_EXCLUSIVE;

I
/I Open "d\itemrec.dat"
I
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
/I'If Open was successful
if (rc == FDS_SUCCESS)
{
1
/I Save the current file position
1
rc = FdsReturnSegFilePos(FileHandle, &Position);
1
/I Call FdsSeekSegFilePos API to go to the position saved as a
/I result of callirg FdsReturnSeqgFilePos.
1
Il (see FdsReturnSegFilePos for more information)
1
rc = FdsSeekSeqFilePos(FileHandle, Position);
printf("FdsSeekSeqFilePos completed with return code =\#bdic);
if (rc == FDS_SUCCESS)
{
I
/I Read the record in the file
1
rc = FdsReadSeqRecord(FileHandle, (voetpid,
&RecordSize);
printf(" Record read = (%%)", Record);
Y end if

I end if

Y end if

else

{

/I else process errors

}

FdsWriteSeqRecord()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Append a record to a sequential file.

#include <fds/file.h>

long FdsWriteSegRerd{longFileHandleconst void BufferPtr unsigned inBufferSizg

FileHandled input
The file handle value obtained from FdsOpenSegFile().

BufferPtrd input
A pointer to the location at which the data to write is stored.

BufferSized input
The size (in bytes) of the record to write. If the file is distributed in a
broadcast domain, this value must be less than or equal to 4,096. If the
file is distributed in the mirrored domain or if the file is not distributed, this
value must be less than or equal to 49,152. In either case, this value must
also be less than or equal to the size (in bytes) of the allocated space
pointed to by BufferPtr

A record is appended to the file. The file pointer is advanced to the end of the

file before the write operation. The first BufferSizebytes of the data specified by
BufferPtrconstitute the user-data portion of the record. The value for BufferSize
must be within the range specified for the user-data portion of the record. See
iSequentSiealvi Eiels&® f or more infor maatda on
portion of the record.

If the call succeeds, FDS_SUCCESS is returned, the entire record is appended to
the file, and the file pointer remains at the end of the file. If the call fails, the portion
of the record that is written, as well as the location of the file pointer, will vary with
the type of error.

FdsWriteSegRecord() returns the following values:
-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-70 FDSERR_CORRUPT

-100 FDSERR_DISK_FULL

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED

about

-260 FDSERR_|O

-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE

-490 FDSERR_REC_SIZE

-530 FDSERR_ROLE_CHANGE

Examples

This example writes a record in a sequential file.

#include <stdio.h>
#inclule <string.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; /I Return from API Call

long FileHandle; /I File Handle returned from Open
const char * FileName = "tkitemrec.dat"; // Name of file to arate
int Flag; I/l Flag value

char Record[500]; // Record to read

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set Flag for FdsOpenSegFile API call
1
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_EXCLUSIVE;

I

/I Open "d\itemrec.dat"

I

rc = FdsOpenSegFile(&FileHandle, FileName, Flag);

/I'If Open was successful

if (rc == FDS_SUCCESS)

{
1
/I Set record to write to "dtitemrec.dat"
1
strcpy(Record, "Write this new record to the file");
1
/I Call FdsWriteSeqRecord API to write record taitdmrec.dat”
/I - record will be added as the last record in the file
1l
rc = FdsWriteSegRerd(FileHandle, (void*) Record, sizeof(Record));
printf("FdsWriteSeqRecord completed with return code = (%) rc);

I end if

Y/ end if
else

{

/I else process errors

}

Binary File Services

Binary files are byte-stream files. In byte-stream files, data can be read from or
written to any position within the file. The data within the file has no
predetermined structure, and the API calls used to manipulate the data do not
translate any control characters. In addition to read and write operations, the
file-pointer location can be moved, ranges of the file can be locked in either a
read-shared or exclusive mode, and file buffering and caching can be
controlled.

Binary files provide more flexibility for the application to manage the data in a file,
but they require more complexity in the application.

The APIs provided by File Services for binary file manipulation are:
FdsCloseBinFile() 6 Close a binary file

FdsFlushBinFile() & Flush any data buffered for a binary file
FdsOpenBinFile() & Open or create a binary file
FdsReadBinFile() 6 Read from a binary file
FdsSeekBinFilePos() & Move the file pointer in a binary file

FdsSetBinFileLocks() 0 Lock or unlock a range in a binary file

= =4 =4 -4 -4 -2 -2

FdsWriteBinFile() o Write to a binary file

FdsCloseBinFile()

Purp ose

Close a binary file.
Syntax

#include <fds/file.h>

long FdsCloseBinFile(lorgeHandlg
Parameters

FileHandled input

The file handle obtained from FdsOpenBinFile().

Remarks

FileHandlebecomes invalid, and any file pointers or locks on the file are released.

Error Conditions

FdsCloseBinFile() returns the following values:
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND

Examples

This example closes a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call

long FileHandle; // File Handle returned from Open
const char * FileName = "tkbinary.dat"; // Name of file to close
int Flag; /I Flag value

/I I nitialize DDS. Could use FdsInit2() instead of Fdslnit()

rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Set Flag for FdsOpenBinFile API call
1
Flag = FDS_FILE_EXIST_OPEN
FDS_FILE_ACCESS_READ_ONLY
FDS_FILE_LOCK_NONE;

1
/I Open "d\binary.dat"
I
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS))
{
)
/I Call FdsCloseBinFile API to closébiary.dat"
I
rc = FdsCloseBinFile(FileHandle);
printf("FdsCloseBinFile completed with return code = (%ati)rc);
}/end if

Y end if

else

{

I else process errors

}

FdsFlushBinFile()

Purpose
Force all updates to the binary file to be written to disk.

Syntax

#include <fds/file.h>

long FdsFlushBinFile(lorgeHandl§

Parameters

FileHandled input
The file handle value obtained from FdsOpenBinFile().

Remarks
All updates to the binary file that can be cached in buffers are written to disk.

Error Conditions

FdsFlushBinFile() returns the following values:
-10 FDSERR_ACCESS

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

Examples

This example will flush any updates that have been cached in buffers, so that
they will be written to the disk.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; /1 Return from API Call

long FileHandle; /Il File Handle returned from Open
const char * FileName = "tbinary.dat"; // Name of file to flush
int Flag; /I Flag value

/I Initialize DDS. Could use FdsInit2() instead of Fdslnit()

rc = FdsInit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
)
/I Set Flag for FdsOpenBinFile API call
I
Flag = FDS_FILE_EXTS’EN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_YES;
I
// Open "d\binary.dat"
)
rc = FdsOpeBinFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS)
{
1
/I Call FdsFlushBinFile API to flush the file to disk
1
rc = FdsFlushBinFile(FileHandle);
printf("FdsFlushBinFile completed with return code = (¥ad)rc);
}/lend if
I end if
else

{

I else process errors

}

FdsOpenBinFile()

Purpose
Open or create a binary file.
Syntax
#include <fds/file.h>
long FdsOpenBinFile(longiteHandlePtrconst char FileName
int Flag);
Parameters

FileHandlePtrd output
Pointer to the location where the file handle will be stored. This value
is required for all the other binary-file APIs. This file handle is not the
operating-system file handle.

FileNamed input
A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specifi
Queue Nameso faionn. more infor ma
Flag & input

A flag consisting of the following attributes:

FileExistActionndicates the action to take if FileName already exists.
Valid values are:

FDS_FILE_EXIST_OPEN
Open the existing file. This is the default value

FDS_FILE_EXIST_REPLACE
Replace the existing file. FDS_FILE_ ACCESS_READ_WRITE
must
also be specified if this value is specified.

FileNewActionndicates the action to take if FileName does not
already exist. Valid values are:

FDS_FILE_ NEW_CREATE
Create the file. This is the default.

FDS_FILE NEW_FAIL
The API fails if the file does not exist and an error is returned.

FileAccessindicates whether write access to the file is requested.
Valid values are:

FDS_FILE_ACCESS_READ_ONLY
Request only read access to the file. This is the default value.

FDS_FILE_ACCESS_READ_WRITE

Remarks

Error Conditions

Request write and read access to the file.

FileLockindicates the type of lock requested for the file. Valid values are:

FDS_FILE LOCK _EXCLUSIVE
Request exclusive access to the file. No other file handle can
access the file for reading or writing.

FDS_FILE_LOCK_SHARED
Request shared access to the file. No other file handle can
access the file for writing, but other file handles can access the
file for reading.

FDS_FILE_LOCK_NONE
Request no lock for the file. Other processes can access the file
for reading and writing. This is the default value.

WriteThruindicates whether buffering or caching of file input and output
is disabled. Valid values are:

FDS_FILE_WRITETHRU_YES
File buffering or caching is disabled. All FdsWriteBinFile()
operations are immediately committed to DASD. All other DDS
file services automatically set FDS_FILE_ WRITETHRU_YES.

FDS_FILE_WRITETHRU_NO
File buffering or caching is not disabled. The file buffering or
caching capabilities of the underlying operating system and

file system are exploited. This is the default.

A file named FileNameis opened with the attributes specified by Flag. If the file
exists, it is either opened or replaced, depending on the value of FileExistActionf
the file does not exist, it is either opened or the API fails, depending upon the

value of FileNewAction

The file pointer is placed at the first byte in the file.

File Services does not implement access control for file locking and sharing, nor
does it implement file buffering or caching. These features are implemented by

the operating system and file system based on the Flag parameter.

FdsOpenBinFile() returns the following values:

-10 FDSERR_ACCESS

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG

-260 FDSERR_IO

-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE

-410 FDSERR_OVERFLOW

Examples

-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

This example opens a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call

long FileHandle; /I File Handle returned fsm Open
const char * FileName = "tkbinary.dat"; // Name of file to create
int Flag; // Flag value

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = FdsInit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{
I

/I Set flag for FdsOpenBinFile API call. Uses the default action of
/I creating file if it does not exist (FDS_FILE_NEW_CREATE is default).
I

Flag = FDS_FILE_EXIST_REPLACE |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_SHARED |
FDS_FILE_WRITETHRU_YES;

Il

/I Call FdsOpenBinFile API to create/replacébihary.dat”

1
rc = FdsOpenBinFile(&FileHandtdeName, Flag);
printf("FdsOpenBinFile completed with return code = (%) rc);

Y end if

else

{

I else process errors

}

FdsQueryBinFileSize()

Purpose

Syntax

Parameters

Query the size of a binary file.

#include <fds/file.h>

long FdsQueryBinFile8{longFileHandleunsigned long €urrentSizg

FileHandled input
The file handle value obtained from FdsOpenBinFile()

CurrentSized output
A pointer to the location of the current size of the binary file (in bytes). If
this APl has not completed successfully, this value is undefined.

Remarks
The current size of the binary file (in bytes) is returned.

Error Conditions

FdsQueryBinFileSize() returns the following values:
-220 FDSERR_HANDLE

-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

Examples

This example returns the size of a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc; /I Return from API call

long FileHandle; // File Handle fom Open
const char * FileName = "Wbinary.dat"; // Name of file to read
int Flag; /I Flag value

unsigned long CurrentSize; /I Current file size

/I Initialize DDS. Could use FdsInit2() instead of Fdslnit()

rc = Fdsinit();

/I If initialization was siccessful
if (rc == FDS_SUCCESS)
{
)
/I Set Flag for FdsOpenBinFile API call
I
Flag = FDS_FILE_EXIST_OPEN |
FDS_EE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
I
// Open "d\binary.dat"
)
rc = FdsOpenBinFileF8eHandle, FileName, Flag);
if (rc == FDS_SUCCESS)
{
1
/I Call FdsQueryBinFileSize to get the size (in bytes) of
// "d:\binary.dat"
1
rc = FdsQueryBinFileSize(FileHandle, &CurrentSize);
printf("FdsQueryBinFileSize completed with return code = {#d)---> File Size = (%d)",
rc, CurrentSize);
Y end if
}/end if

else

{

/I else process errors

}

FdsReadBinFile()

Purpose

Syntax

Parameters

Read a range of data from a binary file.

#include <fds/file.h>

long FdsReadBinFile(loRgeHandlevoid *BufferPtr
unsigned int NBytesPtiong Offset
unsigned lon@rigin);

FileHandled input
The file handle value obtained from FdsOpenBinFile().

BufferPtrd input/output
A pointer to the location where the data that was read will be stored.

NBytesPtrd input/output

Input A pointer to the maximum amount (in bytes) of the data to read.
This value must be less than or equal to 59 000. In either case,
this value must be less than or equal to the size of the allocated
space pointed to by BufferPtr

Output If the call succeeds, a pointer to the amount (in bytes) of data
actually read. The output value is always less than or equal to
the input value.

Offsetd input

The number of bytes to move the file pointer. The Offsetparameter is
used in conjunction with the Originparameter to determine the new, file-
pointer position. If Offsetis greater than 0 (zero), the file pointer is moved
that many bytes from the Originposition toward the end of the file. If Offset
is less than 0 (zero), the file pointer is moved that many bytes from the
Originposition towards the beginning of the file. If Offsetis 0 (zero), the
file pointer is moved in accordance with the Originparameter.

Origind input
The location from which to move the file pointer based on the value
of Offset The Originis specified as:

FDS_FILE_START_OF_FILE
Apply the value in Offsetfrom the beginning of the file (the
file pointer is 0).

FDS_FILE_CURRENT_POS
Apply the value in Offsetfrom the current file pointer position.

FDS_FILE_END_OF FILE
Apply the value in Offsetfrom the end of the file (the file pointer is
equal to the size of the file).

Remarks

The data beginning at the current file pointer is read. File Services adjusts the file
pointer before processing the request, based on the values supplied for Offsetand
Origin

If the value specified by NBytesPtris greater than the number of bytes remaining
in the file, the actual number of bytes that were read is returned in NBytesPtr the -
160 FDSERR_EOF error is returned, and the file pointer is set to the end of the
file.

If Offsetis set to O (zero), and Originis set to FDS_FILE_CURRENT_POS, no
seek action is performed before the read.

If the call succeeds, the FDS_SUCCESS message is returned and the file pointer
is advanced by the number of bytes that were read.

If the call fails, the location of the file pointer is not advanced.

Error Conditions

FdsReadBinFile() returns the following values:
-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-160 FDSERR_EOF

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-490 FDSERR_REC_SIZE

-530 FDSERR_ROLE_CHANGE

-558 FDSERR_SEEK_TYPE

Examples

This example reads from a binary file.

#include <stdio.h>

#include <fds/fds.h>

#include <fds/defs.h>

#include <fds/file.h>

#include <fds/errno.h>

long rc; // Return from API Call

long FileHandle; // File Handle from Open

constchar * FileName = "tbinary.dat"; // Name of file to read
int Flag; // Flag value

char Buffer[500]; // Data read

unsigned int NBytes = 500; // Number of bytes to read
long Offset; // Offset

unsigned long Origin; // Origin

/I Initialize DDS. Could use Fai$2() instead of Fdsinit()
rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1l
/I Set Flag for FdsOpenBinFile API call
1
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
1
/l Open "d\binary.dat"
1l
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS)
{

1

/1 Set Origin and Offset, to designate where in the file to read
I

Origin = FDS_FILE_END_OF_FILGEY to the end of the file

Offset =-10; // Begin reading at offset.O
1

/I Call FdsReadBinFile API to read the first record in the file
Il

rc = FdsReadBinFile(FileHandle,
(void *) Buffer,
&NBytes,
Offset,
Origin);
printf("FdsReadBinFile completed with return code = (%)
" --> Bytes read = (%09)"
" ---> Number of Bytes read = (%d),
rc,
Bufer,
NBytes);
Y/ end if
}/ end if
else
{
I else process errors

}

FdsSeekBinFilePos()

Purpose
Move the file pointer to a specific location within the binary file.

Syntax
#include <fds/file.h>
long FdsSeekBinFilePos(ldfigHandle

long Off<et,
unsigned lon@rigin,

Parameters

Remarks

Error Conditions

Examples

unsigned long KewPosPy,

FileHandled input
The file-handle value obtained from FdsOpenBinFile().

Offsetd input

The number of bytes to move the file pointer. The Offsetparameter is

used in conjunction with the Originparameter to determine the new, file-
pointer position. If Offsetis greater than 0 (zero), the file pointer is moved
that many bytes from the Originposition toward the end of the file. If Offset
is less than 0 (zero), the file pointer is moved that many bytes from the
Originposition toward the beginning of the file. If Offsetis 0 (zero), the file
pointer is moved in accordance with the Originparameter.

Origind input
The location from which to move the file pointer based on the value
of Offset The Originis specified as:

FDS FILE START_OF FILE
Apply the value in Offsetfrom the beginning of the file (the
file pointer is 0).

FDS_FILE_CURRENT_POS
Apply the value in Offsetfrom the current file pointer position.

FDS_FILE_END_OF _FILE
Apply the value in Offsetfrom the end of the file (the file pointer
is equal to the size of the file).

NewPosPtrd output
A pointer to the location where the new file position is stored.

The file pointer is moved to the location specified by Offsetand Origin

It is not an error to seek past the end of the file, and the file size is not affected
by seeking past the end of the file. It is an error to specify a negative, file-pointer
position.

If FDS_SUCCESS is returned, NewPosPtr indicates the current position of the file
pointer.

FdsSeekBinFilePos() returns the following values:
-10 FDSERR_ACCESS

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

-558 FDSERR_SEEK _TYPE

This example will move the file pointer to a specified location in a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call

long FileHandle; // File Hande returned from Open
const char * FileName = "Wbinary.dat"; // Name of file to use

int Flag; /I Flag value

long Offset; /I Offset

unsigned long Origin; // Origin

unsigned long NewPos = 0; /I Current file position

/I Initialize DDS. Couldse FdsInit2() instead of Fdslnit()

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Set Flag for FdsOpenBinFile API call
I
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_ WRITETHRU_NO;
I
// Open "d\binary.dat"
1
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS))
{

1

/I Set Origin and Offset, to determine byte count in the file

I
Origin = FDS_FILE_END_OF_FILE; // Go to the end of the file
Offset =0; // Offset 0

I

/I Call FdsSeekBinFilePos API to go to the last byte in the file
1

rc = FdsSeekBinFilePos(FileHandle,
Offset,
Origin,
&NewPos);
printf("FdsSeekBinFilePos completed with return code = {#6d).
" --=> The size of the file = (%d) bytes.,
rc,
NewPos);
Y/ end if
I end if
else
{
I else process errors

}

FdsSetBinFileLocks()

Purpose
Lock or unlock a range of bytes within a binary file.

Syntax
#include <fds/file.h>
long FdsSetBinFileLocks(IdfigHandlelongOffset unsigned
int NBytes int Flag);
Parameters
FileHandled input
The file-handle value obtained from FdsOpenBinFile().
Offsetd input
The offset (in bytes) from the beginning of the file to the starting position
of the range to lock or unlock.
NBytesd input
The length of the range to lock or unlock. NBytesmust be a positive non-
zero integer.
Flag & input
Used to control the specific lock or unlock action. It consists of the
following attributes:
RangeLockActiorindicates the lock or unlock action for the range
specified. Valid values are:
FDS_FILE_LOCK
Lock the specified region. This is the default.
FDS_FILE_UNLOCK
Unlock the specified region.
RangeFileLockindicates the type of lock requested for the range
specified. These flags are valid only if FDS_FILE_LOCK is also
specified. Valid values are:
FDS_FILE_LOCK_RANGE_SHARED
Lock the region in shared mode. All programs can read the data
in the specified region, but cannot change the data. This includes
the program that issues this API call. This is the default.
FDS FILE_LOCK_RANGE_EXCLUSIVE
Lock the region in exclusive mode. Only the program that
acquires this lock can read or change the data in the specified
region.
Remarks

Regions of the binary file are unlocked or locked.

The locking operation itself is managed by the underlying operating system, so
the results of this API may differ among operating systems.

Error Conditions

This example will lock a specified number of bytes in a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/erno.h>

long rc; // Return from API Call

long FileHandle; /I File Handle returned from Open
const char * FileName = "tbinary.dat"; // Name of file to lock

int Flag; /I Flag value

long Offset; I/ Offset

unsigned long NBytes = 0; /I Number of bytes tolock

/I Initialize DDS. Could use FdslInit2() instead of Fdslnit()

rc = Fdsinit();

/I lf initialization was successful

if (rc == FDS_SUCCESS))

{
I
/I Set Flag for FdsOpentiile API call
)
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
)
// Open "d\binary.dat"
I
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
/I If Open was successful
if (rc == FDS_SUCCESS)
{
I
/I Set Offset and the Number of bytes in the file to lock
)
Offset = 0; /Il Offset O

NBytes = 4; /I Number of bytes to lock

1
/I Set the Flag for the FdsSetBinFileLocks API, to lock the bytes
1
/I Everyone will be allowed to read these bytes, but no one /Afiing this process) will be
allowed to write to these bytes
1
Flag = FDS_FILE_LOCK | FDS_FILE_LOCK_RANGE_SHARED;
1
/I Call FdsSetBinFileLocks API to lock the first 4 bytes in the file
1
rc = FdsSetBinFileLocks(FileHandle,
Offset,
NBytes,
Flag);
printf("FdsSetBinFileLocks completed with return code = {¥6d).
" --> (%d) bytes were locketh",
rc,
NBytes);

}/ end if
}/ end if
else

{

/I else process errors

}

FdsSetBinFileSize()

Purpose

Syntax

Parameters

Remarks

Set the size of a binary file.

#include <fds/file.h>

long FdsSetBinFileSize(IdrigeHandlgunsigned londNewSizg

FileHandled input
The file-handle value obtained from FdsOpenBinFile().

NewSize d input
The new size of the binary file in bytes.

The size of the binary file is set to the size specified by NewSize.

Error Conditions

Examples

FdsSetBinFileSize() returns the following values:
-10 FDSERR_ACCESS

-100 FDSERR_DISK_FULL

-220 FDSERR_HANDLE

-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

-530 FDSERR_ROLE_CHANGE

This example returns the size of a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc // Return from API call

long FileHandle; // File Handle from Open
const char * FileName = "tbinary.dat"; // Name of file to read
int Flag; /I Flag value

unsigned long NewSizej/ New size of file

// Initialize DDS. Could use FdslInitd§tead of FdslInit()
rc = Fdsinit();
/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1l
/I Set Flag for FdsOpenBinFile API call
1l
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
1
/l Open "d\binary.dat"
1l
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
if (rc == FDS_SUCCESS)
{
1
/I Set the new size (in bytes) of \dinary.ct"
1
NewSize = 1024;
1
/I Call FdsSetBinFileSize to set the size (in bytes) of
/I "d:\binary.dat"
1
rc = FdsSetBinFileSize(FileHandle, NewSize);
printf("FdsSetBinFileSize completed with return code = {¥4).
re);
Y end if
}/ end if
else

{

/I else process errors

}

FdsWriteBinFile()

Purpose
Write a range of data to a binary file.
Syntax
#include <fds/file.h>
long FdsWriteBinFile(lorfgleHandleconst void BufferPtr unsigned int NBytesPtrlongOffset
unsigned longrigin);
Parameters

FileHandled input
The file-handle value obtained from FdsOpenBinFile().

Remarks

BufferPtrd input
A pointer to the location at which the data to write is stored.

NBytesPtrd input/output

Input Pointer to the location where the size (in bytes) of the data to
write is stored. This value must be less than or equal to 59 000.
In either case, this value must also be less than or equal to the
size (in bytes) of the allocated space pointed to by BufferPtr

If the current file pointer plus the size specified in NBytesPtris
greater than the current size of the file, File Services attempts
to extend the end of the file.

Output
When this API has completed successfully, the data stored in
the location pointed to by NBytesPtris replaced with the actual
number of bytes written, which could be less than the requested
number of bytes in error situations.

Offsetd input

The number of bytes to move the file pointer. The Offsetparameter is
used in conjunction with the Originparameter to determine the new file
pointer position. If Offsetis greater than 0 (zero), the file pointer is moved
that many bytes from the Originposition towards the end of the file. If
Offsetis less than 0 (zero), the file pointer is moved that many bytes from
the Originposition toward the beginning of the file. If Offsetis O (zero), the
file pointer is moved in accordance with the Originparameter.

Origind input
The location from which to move the file pointer based on the value
of Offset The Originis specified as:

FDS_FILE_START_OF_FILE
Apply the value in Offsetfrom the beginning of the file (the
file pointer is O (zero)).

FDS_FILE_CURRENT_POS
Apply the value in Offsetfrom the current file-pointer position.

FDS_FILE_END_OF_FILE
Apply the value in Offsetfrom the end of the file (the file pointer
is equal to the size of the file).

The file-pointer position is moved before a write operation, based on the
values provided for Offsetand Origin The data is written starting at the new
file-pointer position.

If Offset is set to O (zero) and Originis set to FDS_FILE_CURRENT_POS, no
seek action is performed before the write.

If the call succeeds, the FDS_SUCCESS message is returned and the entire
range of data is written.

If the call fails, NBytesPtrcontains the actual number of bytes written, if any.

In all situations, the file pointer is advanced by the actual number of bytes written.

Error Conditions

Examples

FdsWriteBinFile() returns the following values:
-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-100 FDSERR_DISK_FULL

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

-490 FDSERR_REC_SIZE

-530 FDSERR_ROLE_CHANGE

-558 FDSERR_SEEK_TYPE

This example writes to a binary file.

#include <stdio.h>
#include <sting.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; /I Return from API Call

long FileHandle; /I File Handle returned from Open
const char * FileName = "Wbinary.dat"; // Name of file to write
int Flag; I/l Flag value

char Buffer[500]; // Data to write

unsigned int NBytes = 500; // Number of bytes to write
long Offset; /] Offset

unsigned long Origin; /I Origin

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdslit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
Il
/I Set Flag for FdsOpenBinFile API call
I
Flag #DS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;

1
// Open "d\binary.dat"
1l
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);

/' If Open was successful
if (rc == FDS_SUCCESS)

{
1

/I Set data to write to "dibinarydat"”
1
strcpy(Buffer, "Write this to the file");
NBytes = strlen(Buffer);

1
/I Set Origin and Offset, to designate where in the file to write
1
Origin = FDS_FILE_START_OF_FILE; // Go to the beginning of the file
Offset = 0; // Begin writing at offset O

1
/I Call FdsWriteBinFile API to write record to\linary.dat"
/I - buffer will be written beginning at byte 0

1
rc = FdsWriteBinFile(FileHandle,

Buffer,
&NBytes,
Offset,
Origin);
printf("FdsWriteBinFileompleted with return code = (%ti).",
re);
Y end if

} I end if

else

{

/I else process errors

}

Chapter 5. Node Control

Node List

The Node Control APIs allow you to view a list of all nodes known to the DDS
system as well as to obtain the status of the acting primary distributor.

DDS maintains a |ist of all node | Ds known
communication status with the acting primary distributor. The list includes nodes

that DDS has detected as being active on the system as well as user-defined

nodes that are not yet active.

An API is provided for applications to obtain this list. The list is maintained on the
acting primary distributor, but it can be obtained by calling the API from any node
in the system.

Before calling the API, an array of FDS_NODE_INFO structures must be
declared by your application. The FDS_NODE_INFO structure is defined in the
DDS header file NODES.H. This structure consists of a node ID and a status flag
that will be set DDS to either FDS_ACTIVE or FDS_INACTIVE, as defined in
defs.h. See Appendix A. Data Types for a definition of the FDS_NODE_INFO
structure. An unsigned, integer variable must also be declared that contains the
size of the memory buffer allocated for the array of FDS_NODE_INFO structures.

A void pointer to the array and a pointer to the size of the array buffer are

t

passed as variables to the API, which updates the array with the node list. The
array size must be large enough to contain all of the node IDs and node status
information contained in the node list. To determine the array size, multiply the
size of the FDS_NODE_INFO structure by the number of node IDs.

The list of known node IDs and status might change while DDS is running, so
this API should be called by an application each time a current list of node IDs is
required.

This API returns successfully only when DDS is running on both the node that
calls the API and the acting primary distributor node, and when communication is
established between the two nodes.

See fAFds Ge trinfodmater apaut héwato use this API

FdsGetNodes|()

Purpose

Obtain a list of all node IDs known to the DDS system and each
nodeb6s communication status with the primary

Syntax

#include <fds/defs.h>

#include <fds/nodes.h>

long FdsGetNodes(vofiNodeListunsigned int BufferSize;
Parameters

NodeListd input/output

Input A void pointer to the allocated memory in which to store an array
of FDS_NODE_INFO structures.

Output
When this APl completes successfully, an array of
FDS_NODE_INFO structures is copied into the memory pointed
to by this parameter. Each FDS_NODE_INFO structure contains
a node ID and a node status flag. See Appendix A. Data Types
for more information about the FDS_NODE_INFO structure.

BufferSized input/output

Input When this API is called, this parameter must point to an integer
that specifies the length of the NodeListbuffer.

Output
When this API returns successfully, the length in bytes of the data
returned in the NodeListbuffer is stored in the integer pointed to
by this parameter. If this API returns the error -40
FDSERR_BUFFER_SIZE,the required buffer size is stored in the
integer pointed to by this parameter, and the list of node IDs is not
returned.

Remarks

FdsGetNodes() is used to obtain a list of all node IDs known to the DDS system

and each nodeds communication status with th
be called every time a current list of node IDs or node status information is

required, because the node list or the node status might change while DDS is

running.

When FdsGetNodes() is called on a node that is not communicating with the
acting primary distributor, it returns an FDSERR_ROLE_NOT_FOUND return
code, indicating that the current node is not online and therefore cannot obtain
status information for any other node.

Error Conditions

FdsGetNodes() returns the following values:
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-550 FDSERR_ROLE_NOT_FOUND
-580 FDSERR_TIMEOUT

Examples

This example declares an array of FDS_NODE_INFO variables that holds the
node ID and status for 100 nodes. The FdsGetNodes() API is called to update the
array with the current node list and status.

#include <fds/fds.h>
#include <fds/nodes.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc;
FDS_NODE_INFO NodeList[100
unsigned int BufferLength;

/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdsinit();
/I'If initialization was successful
if (rc == FDS_SUCCESS)
{
BufferLength = sizeof(FDS_NODE_INFO) * 100;
rc = FdsGetNodes((void*) NodeList, &Btlfength);
if (rc I= FDS_SUCCESS)
{

[* perform error processing */

}

Obtaining the Status of the Acting Primary Distributor

The Node Control component opens a queue on a hode whenever it is activated
as the acting primary distributor, and closes it when it is deactivated as the acting
primary distributor. This queue provides a method for applications to receive
notification messages when the acting primary distributor is no longer online.

In order for an application to receive notification messages, it must create a queue
of its own to receive those messages. Then it must open the queue defined by the
constant FDS_ONLINE_Q on the primary using the FdsOpenQ() function,
specifying the handle to its own opened queue for the NotificationQHandle
parameter.

The queue that is specified by the NotificationQHandle parameter will receive
a message whenever the queue is closed on the acting primary distributor.
The application can then attempt to open the queue on the node that
assumes the acting primary distributor role.

The message that is received by the applicat
FDS_IPC_MSG, and an FDS_IPC_MSG_STRUCT data structure is received with

the message. The FDS_IPC_MSG_STRUCT data structure contains the handle of

the closed queue and a reason code for the message. Applications should

compare this handle with the handle received from the FdsOpenQ() function when

fdsOnlineQ was opened. Both the FDS_IPC_MSG message and the

FDS_IPC_MSG_STRUCT data structure are defined in the ipc.h include file.

See AFdsOpenQ()o for more information about
function.

The fdsOnlineQ queue does not accept any messages written
to its queue. Its sole purpose is to provide a method for
determining when the role changes on the acting primary
distributor.

The return codes:

-350 FDSERR_NODE_NOT_FOUND,
-460 FDSERR_QUEUE_NOT_FOUND,
and -550 FDSERR_ROLE_NOT_FOUND

are normal error codes returned by the FdsOpenQ() function when the acting
primary distributor is not online or when a role change is in progress.

This example opens a queue called MyApplQ for receiving FDS_IPC_MSG
messages.

#include <fds/fds.h>
#include <fds/ipc.h>
#include <fds/defs.h>
#include <fds/errno.h>
#define MAX_Q_SIZE 4096

long MyReadQFn(void)

{
long MyApplQHandle;
long Timeout =1; /I wait forever
long PrimaryQHandle;
FDS_IPC_MSG_STRUCT Buffer;

unsigned int BufferSize;
int MessageType;
long rc;

char OnlineQueueName(23);

// Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdsinit();

/I If initi alization was successful

if (rc == FDS_SUCCESS)

{
rc = FdsCreateQ("MyApplQ", // name of local queue
MAX_Q_SIZE, /l amount of data the queue can hold
&MyApplQHandle); /Il handle to this queue
if (rc == FDS_SUCCESS))
{
strcpy(OnlineQueueName, "<FIBEAP::>");
strcat(OnlineQueueName, FDS.ONLINE_Q; //<FDSFDXAP::>fdsOnlineQ
rc = FdsOpenQ(OnlineQueueName, /I primary queue name
MyApplQHandle, /I notification queue
Timeout, // time to wait until queue is open
&PrimaryQHandle); I/l queue handle
if (rc == FDS_SUCCESS))
{
BufferSize = sizeof(Buffer);
rc = FdsReadQ(MyApplQHandle, // handle to local queue
&BufferSize, // max size of single message
/I and size of message returned
(void *) &Buffer, // message data
Timeout,// time to wait for a mesage
&MessageType); // type of message received.
else
{
if (MessageType == FDS_IPC_MSG)
{
if (Buffer.ClosedQHndl == PrimaryQHandle)
{
// do whatever the application
// needs to do when the
// primary is not online.
}
}
}
}
}

if (rc I= FDS_SUCCESS)

/I handle errors

}

return rc;

}
}

Chapter 6. Data Distribution

This chapter describes the Data Distribution component of DDS. It also

describes the following APIs, which are available for use with the Data

Distribution component:

1 FdsActivateAsPrimary() 0 Activate the local node as the acting primary

distributor

FdsAddDomainNode() 8 Add a node to a broadcast domain

FdsCreateBcastDomain() 0 Create a broadcast domain

FdsCreateSynclID() 8 Create a synchronization ID

FdsDeactivatePrimary() 8 Change the role at the local node from acting

primary distributor to acting backup distributor

FdsDeleteBcastDomain() 8 Delete a broadcast domain

FdsDeleteDomainNode() 8 Remove a node from a broadcast domain

FdsGetDomainList() 8 Get the list of all the domains in the system

FdsGetDomainNodes() 0 Get the list of nodes that are in a broadcast

domain

FdsQueryBackupState() 8 Query the state of the backup distributor

FdsQueryDistribution() 8 Query a distribution directory entry for a file or

subdirectory

1 FdsSetDistribution() 8 Modify the distribution characteristics of files and
subdirectories

1 FdsSetupDistMonitor() 8 Prepare to receive notification of data-distribution
events

1 FdsSetupSyncIDNotify() 8 Prepare to receive notification of file or directory
synchronization

=4 =4 =4 -8 -8 _-8_-9_9_-9

= =

The Data Distribution component provides a file-distribution service that
replicates data on multiple nodes. The component synchronizes each image
during normal operations and performs file reconciliation when failed nodes are
brought back into service.

The Data Distribution component is optional on any particular node, though at
least one node in a multi-node system must be installed and configured as the
primary distributor. The prime copy of all distributed files resides on the primary
distributor. As the prime copy of a distributed file is updated, renamed, or deleted,
the changes are distributed to all nodes that have an image of that file. The prime
copy of a distributed file is the only copy of the file that can be changed or
updated. The changes are distributed according to the distribution frequency of the
file (see ADistribution Frequencyo)

In addition to file distribution, the Data Distribution component provides a
reconciliation service. This service ensures that if a node misses updates for any
reason, each distributed file on the node is resynchronized with the prime copy
of the file when LAN communication is established with the primary distributor.

Two different methods are used for distributing updates and performing file
reconciliation. Connection-oriented messages are exchanged between the node
being updated (the primary distributor) and the backup node. Broadcast is used for
distributing updates to subordinate nodes to maximize performance.

Note: The Data Distribution component does not interoperate with IBM 4680
Operating System data distribution or with IBM 4690 Operating System
data distribution.

Distributed Files

File Types

Files are distributed across multiple nodes. An instanceis a copy of a distributed
file on a given node within a distribution domain. There are three types of
instances:

1 Prime copy: resides on the acting primary distributor node
1 Backup copy: resides on the acting backup distributor node

1 Image copy: all instances other than the prime copy

All types of files can be distributed. All operations that result in updates to a
distributed file, including deletions for files and subdirectories, are distributed
except for file-attribute operations (the read-only, system, hidden, archive flags
and file security attributes). A copy operation is treated by the Data Distribution
component as an update to the copied-to file. If the copied-to file exists before the
copy operation, and if it is a distributed file, the update is distributed. If the copied-
to file does not exist before the copy, the update is distributed (that is, the copied-
to file is created on image nodes) if and only if the newly created file is created in a
subdirectory that is distributed.

DDS can only distribute files to which DDS has access. DDS runs under the
System account, so any files that are to be distributed must be accessible to
the System (Administrator) account.

Note: DDS supports the distribution of files up to a maximum size of 4 GB.

If the DistRenamedFile configuration keyword is set to NO, the net effect of
renaming a file or subdirectory is the same as that of a copy followed by a
deletion of the original file or subdirectory. The renamed-to file or subdirectory will
remain distributed after the rename if and only if the new file or subdirectory is in
a subdirectory that is distributed. However, if the DistRenamedFile configuration
keyword is set to YES (the default), the effect is the same in all cases, except that
distributed files not in a distributed directory will remain distributed, though with a
new name.

Your applications do not have to use any special APIs to cause data distribution to
occur once a file or subdirectory has been specified as distributed. For example,
file updates that result from native, operating-system file operations to byte-stream

files (such as WriteFile()) are distri

information about Data Distributiono6s

Your applications can access a keyed file as a byte-stream file, using your native,
operating-system file operations instead of the keyed-file APIs available with DDS.
When native, operating-system file operations are used to modify a distributed
keyed file, the Data Distribution component distributes the file as if it were a byte-
stream file. When keyed-file APIs are used, keyed-file updates are distributed. To
ensure correct distribution, an application should not have a keyed file open with
write access via both native operating system and keyed-file APIs concurrently,
and should open a distributed keyed file in a way that prevents other processes

us e

but ed

of

from having write access to it when native, operating-system calls will be used to
modify it. You can provide this protection by specifying the
FDS_FILE_LOCK_EXCLUSIVE or FDS_FILE_LOCK_SHARED flag on
FdsOpenBinFile().

Distribution Directory

Data distribution allows distribution to be managed at both the file level and the
subdirectory level. You can specify the distribution of entire subdirectories
without having to be aware of the specific files that exist in them. A distribution
directory provides this capability.

The distribution directory determines which files are distributed, the nodes to
which the files are distributed, and the distribution frequency for each file. Each
entry in the directory represents either a single file or a subdirectory, and stores
the following information:

Name Data distribution supports a hierarchical name space. Files with
arbitrarily long path specifications can be distributed.

Subdirectory indicator
The subdirectory indicator specifies whether the directory entry represents
a file or a subdirectory.

Domain type
The distribution domain type specifies either mirrored domain or
broadcast domain.

Distribution domain name
The domain name is a broadcast domain name if the type is broadcast
domain. There is only one mirrored domain, so no name is required in
this case. Note that a file or subdirectory can be distributed to one
distribution domain at most.

Distribution frequency
The distribution frequency is one of the following:

9 Distribute on close
9 Distribute on update

See fiDistribution Frequencyo for an expl e
frequency.

Scope qualifier
The scope qualifier is applicable only to directory entries that represent
subdirectories. The two possible values and their meanings are:

FILE Only the files in the subdirectory are distributed.
TREE All files and subdirectories are distributed.

The following APIs are provided to manipulate the distribution directory:
1 FdsAddDomainNode() -Add a node to a broadcast domain

FdsCreateBcastDomain() -Create a broadcast domain
FdsDeleteBcastDomain() -Delete a broadcast domain
FdsDeleteDomainNode() -Remove a node from a broadcast domain
FdsGetDomainNodes() -Get the list of nodes that are in a broadcast

domain

1 FdsQuer yDistribution() -Query a distribution directory entry for a file or
subdirectory

1 FdsSetDistribution() -Modify the distribution characteristics of files and
subdirectories

= =4 =4 =4

Directory Management

Logical Names

The distribution directory resides on the primary distributor node. Because the
backup distributor must be prepared to assume the role of primary distributor at
any time, it maintains a duplicate copy of the directory. In addition, each
subordinate node maintains locally that portion of the directory with entries
relevant to it.

Logical names can be used to cause the instances of a given distributed file or
subdirectory to have different path names on the nodes to which it is distributed.
This function provides flexibility when using a system of nodes where every node
is not configured identically in terms of applications and disks.

To use logical names, define a logical name for a distribution directory entry that
resolves to a different file or subdirectory operating-system path name on each
node within the distribution domain. The logical name is the operating-system
path name from the distribution directory entry, prefixed with the percent
character (%).

Note: Because Windows files systems are not case-sensitive, and the Name
Services component is case-sensitive, logical names that contain the percent
character must be uppercase.

The percent character (%), although not reserved, has a special meaning for data
distribution. It identifies a logical name on the acting primary distributor that itself
resolves to another logical name. This second logical name must exist on each
node within the distribution directory. The second logical name can be used by
applications and the Data Distribution component to access the prime copy or an
image copy of the distributed file, even though the operating system path name
might differ on each node. All of the logical names mentioned above must be
active on each node within the distribution domain before the creation of the
associated distribution-directory entry.

For example, assume that you want to distribute a subdirectory within a broadcast
domain that contains three nodes:

1 The primary distributor

1 The backup distributor

9 A node with a node ID of OTIS

The operating-system path name of the subdirectory on the configured primary
distributor is c:\otis_stuff\config_files\. The operating-system path name of the
subdirectory on the configured backup distributor is d:\otis_stufficonfig_files\.
The operating-system path name of the subdirectory on node OTIS is
c:\config_files\.

To distribute the subdirectory, follow these steps:

1. Define the following logical names on the configured primary distributor:

Logical Name Resolved Name
<%CQ:OTIS_STUREONFIG_FILES otis_stuff

<otis_stuff> c\otis_stufficonfig_filed

2. Define the following logical names on the configured backup distributor:

Logical Name Resolved Name

<%DXOTIS_STUREONFIG_FILBS otis_stuff
<otis_stuff> c\otis_stufficonfig_file$

3. Define the following logical names on node OTIS:

Logical Name Resolved Name
<%C.CONFIG_FILBS otis_stuff
<otis_stuff> c\config_file§

See Chapter 7. Name Services and the refer to IBM Distributed Data
Services/Controller Services Feature for Windows Installation and
Configuation Guidéefor information about how to create logical names.

The Data Distribution component uses the logical names that begin with the
percent character (%) to detect when a logical name must be used when
accessing files and subdirectories on different nodes within the distribution
domain. This logical name resolves to the logical name that must be used by the
Data Distribution component to access the file or subdirectory on different nodes
within the distribution domain.

Distribution Frequency

The effective distribution frequency of a file is specified in the distribution
directory as either distribute-on-close or distribute-on-update. Changes are
distributed when the file is closed or when the contents are flushed if the
distribution frequency is distribute on close. (You can flush the contents of a file
using the FlushFileBuffer() API on Window.)

The File System Interface component forces the write-through option for all opens
of files that have a distribution frequency of distribute-on-update. Refer to the IBM
Distributed Data Services/Controller Services Feature for Windows Installation

and Configuration Guidfer more information about the File System Interface
component.

Each separate update to byte-stream files distributed to broadcast domains with
an effective distribution frequency of distribute-on-update must be limited in size to
a maximum of 4 KB. Updates larger than 4 KB to such files are rejected by the
Data Distribution component. The application detects this condition as an error
returned by the update API (for example, WriteFile() on Windows.

Reconciliation

Reconciliation is the process of making an image copy of a file identical to
the prime copy. There are two forms of reconciliation:

Full reconciliation
Copies the prime copy of the file to the backup distributor or to
a subordinate node.

Partial reconciliation
Achieves the same end result by applying a saved list of updates to
the down-level image. This method is used for keyed files. See

AKeyreidl e Ser vi ces oioriabaout keyedrfiles. i nf or mat

Byte stream files are reconciled in a similar manner, by copying to the
down-level image only those portions of the prime copy that have been
modified since the last time the two instances were known to be
identical.

Partial reconciliation is used only for keyed files larger than 32 KB and
byte stream files that have an effective distribution frequency of distribute
on update. Even then, certain error conditions can cause full reconciliation
to occur. Full reconciliation is used in all other circumstances. Partial
reconciliation is not used for small keyed files, because full reconciliation
of small files is more efficient than applying multiple updates.
Reconciliation occurs, if required, at an image node each time it
establishes a connection with the primary distributor, including during
IPLs. There are two exceptions to this rule:

Distribute-on-close files in the mirrored domain are not reconciled
immediately.

A distribute-on-close file in a broadcast domain is not reconciled
immediately if it has been modified by an application since the last open,
close, or flush operation.

In both cases, the file is effectively reconciled the next time it is closed or
flushed at the primary distributor.

Note: The Data Distribution component must open the prime copy of a file on
the primary distributor to reconcile it to the acting backup distributor or a
subordinate node. An open file cannot be:

91 Deleted. A user could be performing an erase function at the
command line or a program calling the DeleteFile() on Windows.

1 Renamed. A user could be performing a rename function at the
command line or a program calling the MoveFile() on Windows.

1 The target of the CopyFile() on Windows.

Because reconciliation of a file can occur at any time (for example, as the result

of power being turned on at a node), an attempt to delete or rename a distributed

file, or a programébés call to DosCopy() or Cc
user or program that encounters such a situation should respond by retrying the

operation at a later time.

The reconciliation subsystem requires an additional, free working area. This free
working area must be available on a controlled drive of the subordinate
workstation and backup distributor. The amount of free working area must be
equal to the size of the largest file that will be reconciled after applications have
been started on these workstations. Any file defined as distribute-on-close is
normally distributed via full reconciliation. Of course, there must also be enough
disk space for the distributed files, as well as for the free working area.

Data Integrity and Availability

Reconciliation recovers from single failures by making all instances of a file
identical after the failure is corrected. However, the order in which files are
reconciled to a node is not specified and is unpredictable. This fact has two
ramifications:

1. While a node is being reconciled, files, including individual files and files
relative to other files, pass through inconsistent states.

2. There are some combinations of primary-distributor and backup-distributor
failures that could result in an acting primary distributor with an inconsistent
set of files. These are double failures from which the Data Distribution
component cannot automatically recover. For example:

1 The acting primary distributor fails.

1 The acting backup distributor is made the acting primary distributor.

1 The old primary distributor is repaired and begins to reconcile from the
current acting primary distributor.

The old acting backup distributor (current primary distributor) fails.

The current acting backup distributor is made the acting primary

distributor again, and now has inconsistent files.

1
1
Role changes can not only result in data loss (from distribute on close files),
but can also lead to double failures that result in inconsistent files.
In the context of data integrity and availability, failures are:
Abnor mal termination of a nodeds operating
Abnormal termination of DDS on a node
Hard-disk failures CPU or memory failures

LAN failure

A = =2 =4 =4

Power-line disturbances (PLDs)

See the note under fiReconciliati

o (
Distribution componentés use of d

no for inf
istributed

Distribute -on-Update Files: DDS prevents the loss of data from a distribute-on-
update file due to a single failure. When an application receives a successful

return code from a file-update operation, the update has been performed on the
prime copy of the file, and has been recorded in a way such that:

1. The update will not be lost even if the primary distributor fails. This fact
implies that the update has been saved by the backup distributor
2. All nodes to which the file is distributed will eventually receive the update.

Distribute -on-Close Files: Distribute-on-close files do not provide the same
degree of data integrity as distribute-on-update files. Distribute-on-close files are
appropriate when performance is more important than ensuring that no updates
are lost.

After a single failure, DDS prevents the loss of data applied to a distribute-on-
close file up to the time of the last successful close of the file or up to the last
flush operation. However, Data Distribution distributes distribute-on-close files
asynchronously, so that a close operation or a flush operation will be completed
before the distribution is completed.

Updates to distribute-on-close files are blocked while the file is being
distributed. Such a distribution might be the result of a FlushFileBuffers() on
Windows, or due to the reconciliation of a node. This restriction allows a
consistent version of the file to be distributed.

Activating and Deactivating the Acting Primary Distributor

The primary task of the configured backup distributor is to assume control when
the configured primary distributor becomes disabled or is deactivated. The first
time the system is started, the configured primary distributor assumes the acting
primary-distributor role. It remains the acting primary distributor until it becomes
disabled or is deactivated.

Two options are available for activating the acting backup distributor as the acting primary
distributor. You can issue a DDS command using the Node Control Utility to manually
activate the acting backup distributor as the acting primary distributor. This option gives you
control over the timing the activation and is useful in preparing for scheduled machine
outages. DDS also provides an automatic switch-over option that results in the acting
backup distributor automatically assuming the role of primary distributor. Each of these
functions is described in the following sections.

User-Initiated Activation of the Primary Distributor

The default behavior of DDS results in the acting backup distributor not assuming
the acting primary-distributor role automatically. In this case, two steps are
required before the acting backup distributor can be activated as the primary
distributor.

1. Deactivating the acting primary distributor
2. Activating the configured backup distributor as the acting primary distributor

You must deactivate the current, acting primary distributor before you can activate

a new primary distributor, unless the current, acting primary distributor is not

running or is not communicating with other workstations. Refer to IBM Distributed

Data Services/Controller Services Featuref Wi ndows Uereoréds Gui de
information about using the Node Control Utility to perform these deactivation and

activation steps.

Note: If the configured primary distributor will be disabled for only a short period
of time, you may not need to activate the configured backup distributor as
the acting primary distributor. Such might be the case if the applications
running on other nodes use image copies of input files and asynchronously
write output data to the acting primary distributor.

When the configured primary distributor resumes normal operation (it is powered
ON and connected to the LAN) it does not automatically resume its role as the
acting primary distributor. If the configured backup distributor was activated by
the operator as the acting primary distributor, the configured primary distributor
assumes the acting backup-distributor role.

To return the system to its normal state, you must first deactivate the acting
primary distributor (the configured backup distributor) and then reactivate the
configured primary distributor as the acting primary distributor.

More complex scenarios are possible. For example, the acting primary
distributor could fail, the operator could activate the acting backup distributor as
the acting primary distributor, and then the new, acting primary distributor could
fail. At this point, there are several possibilities:

1 The new acting primary distributor could resume normal operation. In this
case, no data would be lost.

I The original acting primary distributor could resume normal operation before
the new acting primary distributor. In this case the original acting primary
distributor assumes its role again as the acting primary distributor. Data will be
lost that was collected (updated) on the new acting primary distributor after the
original acting primary distributor failed.

91 Both the original acting primary distributor and the new acting primary
distributor could resume normal operation simultaneously. In this case, the
new acting primary distributor detects that it assumed the role of acting
primary distributor more recently than the original acting primary distributor,
and again assumed the acting primary distributor role. No data would be lost
in this case.

The following APIs control the activation and deactivation of the
primary distributor:

1 FdsActivateAsPrimary()

1 FdsDeactivatePrimary()

The deactivation of the acting primary distributor will fail if the backup distributor
is not online and fully reconciled. Use the FdsQueryBackupState() API to
determine if the backup distributor is ready to be activated as the primary
distributor.

Applications that run on the acting primary distributor should be stopped
before deactivating the acting primary distributor.

The FdsSetupDistMonitor() APl can be used by an application to detect
the activation and deactivation of the primary distributor.

Automatic Switch-Over

The DDS Automatic Switch-Over feature provides the capability for
automatically activating the acting backup distributor as the acting primary
distributor. The activation occurs when the workstation that was performing
the acting backup distributor role has lost communication with the acting
primary distributor. Lost communications can result from a hardware failure,
shutdown of the operating system, or any other event that results in the
termination of DDS on the acting primary distributor.

To enable automatic switch-over, you must install the DDS Automatic Switch-
Over feature and change your DDS configuration to enable it. Refer tolBM
Distributed Data Services/@ntroller Services Feature for Windows Installation
and Configuration Guid#r information about:
1 configuring automatic switch-over using the AutoSwitchOver,
AutoSwitchOverDelay
1 AutoSwitchOverForce keywords, for a list of conditions that must be met
before automatic switch-over will occur

1 the recommended network hardware installation and configuration to use
with automatic switch-over.

When an automatic switch-over activation occurs, the result is the same as if a
manual (user-initiated) activation were performed using the Node Control Utility.
In particular, the FDSAP batch file will be executed. Configuring DDS for
automatic switch-over does not prevent you from initiating a manual activation or
deactivation. Automatic switch-over has no effect on the manual activation and
deactivation functions. However, when the acting primary is manually
deactivated, that same node will not automatically activate until it has
successfully reconciled with an acting primary distributor.

The typical, automatic-switch-over scenario occurs when the machine that is
performing the acting-primary role fails or is powered off. The following events
occur to complete the automatic switch-over:

1. The acting primary distributor fails or is powered off.

2. The acting backup disbutor:

1 detects the loss of communication with the acting primary
distributor

9 continually tries to reestablish communication with the acting
primary distributor for the amount of time specified by the
AutoSwitchOverDelay configuration keyword

9 fails to reestablish communication and automatically activates as
the acting primary distributor.

3. The original primary distributor is restarted and detects the new acting
primary distributor. It establishes communication with the new primary
distributor, reconciles its files with those on the new acting primary
distributor, and becomes the acting backup distributor.

When DDS is configured for automatic switch-over, automatic deactivation is
also enabled. Automatic deactivation entails the deactivation of the acting
primary distributor whenever both of the following conditions are met:

1. The acting primary distributor can accurately determine when it is
disconnected from the LAN, or is unable to communicate with the LAN.

Notification of disconnection from the LAN is not communicated by all network
adapters to applications such as DDS. For LAN configuration requirements
when using the DDS Automatic Switch-Over feature, refer to the Automatic
Primary Distributor Switch-Over section in the IBM Distributed Data
Services/Corroller Services Feature for Windows Installation and
Configuration Guide

2. The acting primary distributor has communicated with an acting backup
distributor after DDS became the acting primary distributor.

Under these conditions, DDS automatically deactivates the acting primary
distributor and executes the FDSDP batch file to prevent two machines from both
performing the acting primary distributor role.

Automatic switch-over is always initiated after the acting backup distributor
detects a loss of communication with the acting primary distributor. The
configured role of the machine is not considered. This independence from the
configured roles allows automatic switch-over to occur repeatedly in either
direction to insure that there is always an active primary distributor.

Consider a system with a configured primary distributor (node CPD) and a
configured backup distributor (node CBD). The following scenario demonstrates
the flexibility of the DDS automatic switch-over capability.

1. DDSis started on CPD and CBD. CPD assumes the acting primary-distributor
role and CBD the acting backup-distributor role.

2. CPD fail s, resulting i n CBdsributoarsless umi ng t he
Some time later, CPD resumes normal operation and becomes the acting
backup distributor. At this point, you could continue running with the roles
reversed or node CBD could be manually deactivated and CPD could be
manually activated as the primary distributor, so that the acting and configured
distributor roles again match.

3. Assume the system was allowed to continue with CBD as the acting primary
distributor and CPD as the acting backup distributor. If CBD fails or is
manually deactivated at this point, the acting primary role would switch back to
CPD. When CBD resumed normal operation, it would automatically assume
the role of acting backup distributor.

4. The roles could continue to be switched between the two machines
indefinitely, as the acting primary distributor fails or is taken offline.

Automatic switch-over should be used when it is critical that your DDS system
always has a primary distributor available. However, the decision to use the
automatic switch-over function should be made carefully; in some cases
automatically activating the acting backup distributor as the acting primary
distributor can lead to loss of data. For example, when the acting backup
distributor is activated as the primary, all updates since the last flush made to open
files with a distribution frequency of distribute-on-close are lost. When manually
activating, you may be able to assure that all distributed files have been closed on
the acting primary distributor before deactivating and then activating the backup
distributor as the primary. Automatic activation does not give you that opportunity.

Performance

The number of distributed files and the block size of keyed files can affect
system performance.

Number of Distributed Files

Keyed Files

Restrictions

DDS performance is affected by the number of distributed files in the system.

As the number of distributed files increases, the response time of file operations

can become slower.

There is no specific upper limit on the number of distributed files that will

guarantee good performance. Performance is greatly affected by many factors in
the system. However, systems with 10,000 or fewer distributed files are less likely
to experience performance degradation related to the total number of distributed

files.

When totaling the number of distributed files, count files in distributed directories

as well as those which are explicitly distributed. Distributed files with long file
names should be counted as two files when considering performance
implications.

Update and distribution throughput for distribute-on-update keyed files is reduced
as the record size or key size increases. A distribute-on-update keyed file can be
updated while a node is performing a full reconciliation of the same file. However,
the full reconciliation of the file reduces the throughput of the updates. The larger

the block size of the keyed file, the greater the reduction in throughput.

A distribute-on-update keyed file can also be updated while a node is performing
a partial reconciliation of the same file. However, the partial reconciliation of the

file reduces the throughput of the updates.

Data Distribution has the following restrictions:

I The following restrictions apply to rename operations, such as a user
performing a rename function at the command line or a program calling an
API to rename the file:

T A distributed directory cannot be renamed.
T A directory that contains a distributed file, either directly or in a
descendant subdirectory, cannot be renamed.

9 If adirectory has been set to be distributed with a scope qualifier of

FDS_SCOPE_TREE, you cannot move another directory into the distributed

directory. For example, if directory x has been set to be distributed with a
scope of FDS_SCOPE_TREE, you cannot make directory y (using the
MOVE command) a subdirectory of x.

1 The following restrictions apply to using the distribution directory:

T Files that reside on the boot partition cannot be distributed.
T You cannot distribute the root directory of a drive.

T No file or directory in the DDS installation or WORK directories can be

distributed.

T All possible combinations of subdirectory indicator, domain type,
distribution frequency, and file type (byte stream or keyed) are
supported, with the following exception:

Byte stream files (and subdirectories with byte-stream files) that have

distribution frequencies of distribute-on-update should not be distributed
to a broadcast domain if updates to these files are more than 4 KB each.
Such directory entries are allowed, but updates to these files of more
than 4 KB each are rejected by Data Distribution.

1 The key length of distributed keyed files is limited to a maximum of 255
bytes.

FdsActivateAsPrimary()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Activate the local node as the acting primary distributor.

#include <fds/dist.h>

long FdsActivateAsPrimary(irorceFlag;

ForceFlagd input
A flag that indicates whether to force activation. Valid values are:
FDS_FORCE
Force activation
FDS_NO_FORCE
Do not force activation

FdsActivateAsPrimary() activates the local node as the acting primary
distributor. Two nodes are eligible to be the acting primary distributor: the
configured primary distributor and the configured backup distributor. Whenever
one node is activated as the acting primary distributor, the other node assumes
the role of the acting backup distributor. If the local node is not fully reconciled
and the ForceFlagdoes not specify force activation, the API fails with the -380
FDSERR_NOT_RECONCILED error.

This API does not start the FDSAP.BAT batch file (Windows). The FDSAP

command or batch file is started by the Node Control Utility, which uses this API

to activate the configured backup distributor or the configured primary distributor

as the acting primary distributor. See the IBM Distributed Data

Services/ Controller Services fofm@ed ure for
information about the Node Control Utility.

This API can succeed only when called on either the configured backup
distributor or configured primary distributor, and neither is the acting primary
distributor.

FdsActivateAsPrimary() returns the following values:
-60 FDSERR_CONFIG
-170 FDSERR_EXISTS
-210 FDSERR_FLAG

-360 FDSERR_NODE_TYPE
-380 FDSERR_NOT_RECONCILED
-560 FDSERR_SEQUENCE

Examples

#include <stdio.h>

#include <fds/fds.h>

#include <fds/dist.h>
#include <fds/errno.h>

long rc;// Return from API Call

/I Initialize DDS. Could use FdslInit2() instead of FdsInit().

rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
I/l The following call to FdsActivateAsPrimary API must be issued
// from either the Configured Primary or the Configured Backup
/I Distributor
1
rc = FdsActivateAsPrimary(FDS_FORCE);
printf("FdsActivateAsPrimary completed with return

code = (%d)n", rc);
}/ end if
else

I else process errors

}

FdsAddDomainNode()

Purpose
Add a node to a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsAddDomainNode(const FDS_DOMAIN_N2dritainName const
FDS_NODE_NAN\©delD);

Parameters

DomainNamed input
Indicates the broadcast domain name to which you want to add the node.

NodelDd input
Indicates the node ID of the node you want to add to the broadcast
domain.

Remarks

FdsAddDomainNode() adds a node to a broadcast domain. All files distributed
to the domain are loaded onto the node.

This API can be called from an application running on the acting primary
distributor only.

Error Conditions

FdsAddDomainNode() returns the following values:
-60 FDSERR_CONFIG

-90 FDSERR_DISK

-120 FDSERR_DOMAIN_NAME

-130 FDSERR_DOMAIN_NOT_FOUND

-170 FDSERR_EXISTS

-340 FDSERR_NODE_NAME

-360 FDSERR_NODE_TYPE

Examples
#include <glio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; /I Return from API Call

/I Modify Domain Name

FDS_DOMAIN_NAME DomainName = "DOMAINXxx";
FDS_NODE_NAME NodelD = "Node_A"; // Node to Add to Domain
/I Initialize DDSCould use FdsInit2() instead of Fdslnit().

rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{
I

/I Call FdsAddDmainNode to add Node ID "Node_A" to DOMAINXxx
I

rc = FdsAddDomainNode(DomainName, NodelD);
printf("FdsAddDomainNode completed with return cod¢%djn",
rc);
Y end if
else

{

I else process errors

}

FdsCreateBcastDomain()

Purpose
Create a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsCreateBcastDomain(const FDS_DOMAIN_[DaREinNameunsigned inBufferSize
FDS_NODE_NAMHEodeList);

Parameters

DomainNamed input
Indicates the name of the broadcast domain to be created. It must not be
equal to the node ID of any node in the system.

BufferSized input Indicates the size of the NodeListbuffer in bytes.

NodeListd input
A pointer to an array of FDS_NODE_NAME elements. Each
FDS NODE_NAME contains a node ID.

Remarks

FdsCreateBcastDomain() can be called from an application running on the acting

primary distributor only. It creates a broadcast domain with the nodes indicated in
NodeList.If no NodeListis passed (NodeListis zero), an empty broadcast domain
is created.

This API should not be used to create a broadcast domain that begins with the
prefix FDS. The characters FDS are reserved. This function cannot be used to
create a broadcast domain named MIRRORED.

Only one broadcast domain is supported.

Error Conditions

FdsCreateBcastDomain() returns the following values:
-20 FDSERR_ADDRESS

-60 FDSERR_CONFIG

-120 FDSERR_DOMAIN_NAME

-170 FDSERR_EXISTS

-340 FDSERR_NODE_NAME

-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <string.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_DOMAIN_NAME DomainName = "DOMAINXxx"; // New Domain Name
FDS_NODE_NAMENameList[5]; /I List of Nodes in Domain
unsigned int BufferSize = sizeof(NameList); /I Size of NameList
/I Initialize DDS. Could use FdslInit2() instead of FdslInit().

rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Set up list of Nodes in Domain

i
strcpy(NameList[0], "Node_1")
strcpy(NamelList[1], "Node_2")
strepy(NamelList[2], "Node_3");
)
)

strepy(NamelList[3], "Node_4");
strcpy(NamelList[4], "Node_5");
1
/I Call FdsCreateBcastDomain API to create Domain DOMAINxx
/I - create DOMAINxx with Hode IDs

I
rc = FdsCreateBcastDomain(DomainName, BufferSize, NameList);
printf("FdsCreateBcastDomain completed with

return code= (%d)n", rc);

1

i end if
else

{

I else process errors

}

FdsCreateSyncID()

Purpose
Create a synchronization ID associated with a particular, distributed-file update.
Syntax
#include <fds/file.h>
long FdsCreateSyncID(lofgeHandleFDS_SYNC_%8yncID);
Parameters
FileHandled input
Indicates the file handle returned by DDS when the sequential, keyed,
or binary file was opened.
SynclDd output
Pointer to the location where the synchronization ID is stored.
Remarks

FdsCreateSynclID() can be called from an application running on any node. It
returns a synchronization identifier. The synchronization ID allows an application
to determine when a certain set of file updates have been distributed to one or
more nodes within a distribution domain. For files with a distribution frequency of
distribute-on-update (DOU), this API should be called by the application
immediately after the file update for which the synchronization ID is to be
recorded.

For keyed files with a distribution frequency of distribute-on-close (DOC), this API
should be called by the application immediately after the file has been flushed
using FdsCloseKeyedFile().For binary files with a distribution frequency of
distribute-on-close (DOC), this API should be called by the application immediately

after the file has been flushed using FdsFlushBinFile().
Note: This API should not be used with sequential DOC files.

The synchronization ID identifies the current state of the file in the distribution
domain in terms of the last update applied at the acting primary distributor. The
synchronization ID can be used by an application at any node within the
distribution domain to wait until the file at that node is brought to the state
identified by the synchronization ID obtained at the acting primary distributor.

Error Conditions

FdsCreateSynclD() returns the following values:
-60 FDSERR_CONFIG
-220 FDSERR_HANDLE
-350 FDSERR_NODE_NOT_FOUND
-375 FDSERR_NOT_DISTRIBUTED
-530 FDSERR_ROLE_CHANGE
-560 FDSERR_SEQUENCE

Examples

#include <stdio.h>
#inclue <fds/fds.h>
#include <fds/file.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; /I Return from API Call
FDS_SYNC_ID SynclD; /I SynclD

long FileHandle; /! FileHandle

unsigned int KeySize;// Size of key

unsigned int RecordSize; /I Size of records to write

/I Initialize DDS. Could use FdslInit2() instead of FdslInit().
rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{

I
/I The following call to FdsCreateSyncID API can be invoked from an
/I application running on any node.

I/l For this example, assume this program is running on the

/l acting primary and you want to notify a remote node regaglin

/I updates to a keyed file.

1

Il
/I Open the distribute on update file, "tdou\itemrec.dat", so

/I 'a SynclD can be created for this file.
1

rc = FdsOpenKeyedFi&FileHandle,
"d:\\dou\\itemrec.dat",
&KeySize,
&RecordSize,

FDS_FILE_ACCESS_READ_WRITE);

if (rc == FDS_SUCCESS))
{
I
/I Call FdsCreateSyncID API for fil&xX)Ritemrec.dat"
)
rc = FdsCreateSyncID(FileHandle, &SyncID);
printf("FdsCreateSynclD completed witiurn code = (%d)n”,
rc);

1

/I Open a queue on the remote node and write the SynclID

Il returned from FdsCreateSyncID into it.

Il (See the FdsSetupSyncIDNotify API for more information as to

/l what occurs on the remote node.)

1

Y end if

Y end if
else
{

/I else process errors

}

FdsDeactivatePrimary()

Purpose

Syntax

Remarks

Error Conditions

Deactivate the primary distributor role at the local node.

#include <fds/dist.h>

long FdsDeactivatePrimary() ;

FdsDeactivatePrimary() deactivates the acting primary distributor role at the local
node. This API will succeed only when called on the acting primary distributor. It
will fail if the acting backup distributor is not online and fully reconciled.

This API may take a long time to complete. Running this API when there is a lull
in system activity improves the time required.

This API does not start the FDSDP.BAT batch file.. The FDSDP command and

batch files are started by the Node Control Utility, which uses this API to

deactivate the acting primary distributor. See the IBM Distributed Data
Services/ Controller Services fofm@d ure for
information about the Node Control Utility.

FdsDeactivatePrimary() returns the following values:
-60 FDSERR_CONFIG

Wi

n

Examples

-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE

-380 FDSERR_NOT_RECONCILED
-560 FDSERR_SEQUENCE

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call

/I Initialize DDS. Could use FdslInit2() instead of RsIni

rc = Fdslnit();

/I 1f initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I The following call to FdsDeactivatePrimary APl must baecid
/I from the Acting Primary Distributor
I
rc = FdsDeactivatePrimary ();
printf("FdsDeactivatePrimary completed with return code =

(%d). \n",rc);
Y/ end if
else

{

I else process errors

}

FdsDeleteBcastDomain()

Purpose

Syntax

Parameters

Remarks

Delete a broadcast domain.

#include <fds/dist.h>

long FdsDeleteBcastDomain(const FDS_DOMAIN_NDski&ainNamse);

DomainNamed input
Indicates the name of the broadcast domain to be deleted.

FdsDeleteBcastDomain() can be called from an application running only on the
acting primary distributor. It deletes the broadcast domain indicated by
DomainName This deletion causes all files and subdirectories distributed to the
broadcast domain to be made local (deleted from the distribution directory). All

files distributed to this domain must be closed when this function is called.

This API should not be used to delete a broadcast domain that begins with
the prefix FDS. The characters FDS are reserved. This function cannot be
used to delete a broadcast domain named MIRRORED.

Error Conditions

FdsDeleteBcastDomain() returns the following values:
-10 FDSERR_ACCESS

-60 FDSERR_CONFIG

-90 FDSERR_DISK

-120 FDSERR_DOMAIN_NAME

-130 FDSERR_DOMAIN_NOT_FOUND

-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; /I Return from API Call

/I Choose Domain Name to delete

FDS_DOMAIN_NAMI®mainName = "DOMAINXX";

/I Initialize DDS. Could use FdsInit2() instead of Fdslnit().

rc = Fdslnit();

/1 1f initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Call FdsDeleteBcastDotimsAPI to delete DOMAINXx
I
rc = FdsDeleteBcastDomain(DomainName);
printf("FdsDeleteBcastDomain completed with return code =

(%d)\n", rc);
}/lend if
else

{

I else process errors

}

FdsDeleteDomainNode()

Purpose
Remove a node from a broadcast domain.

Syntax
#include <fds/dist.h>

long FdsDeleteDomainNode(const FDS_DOMAIN_NZdvitainNameconst FDS_NODE_NAME
NodelD);

Parameters

Remarks

Error Conditions

Examples

DomainNamed input
Indicates the broadcast domain name from which you want to remove
the node.

NodelDd input
Indicates the node ID of the node to be removed.

FdsDeleteDomainNode() can be called from an application running on the
acting primary distributor only. It deletes a node from a broadcast domain. All
files distributed to the domain are deleted from the node.

FdsDeleteDomainNode() returns the following values:
-60 FDSERR_CONFIG
-90 FDSERR_DISK
-120 FDSERR_DOMAIN_NAME
-130 FDSERR_DOMAIN_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call FDS_DOMAIN_NAME DomainName = "DOMAINXxx"; //
Domain Name to modify FDS_NBINAME NodelD = "Node_A"; // Node to Add to
Domain

/I Initialize DDS. Could use FdslInit2() instead of FdsInit(). rc = FdslInit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{

I
/I Call FdsDeleteDomainNode API to delete Node ID "Node_A" from
/I DOMAINXXx
1
rc = FdsDeleteDomainNode(DomainName, NodelD);
printf("FdsDeleteDomainNode completed with return
code = (%d) \n", rc);
}/lend if else
{

/I else process errors

}

FdsGetDomainList()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Examples

Obtain the list of all the domains in the system.

#include <fds/dist.h>

long FdsGetDomainList(unsigned*BufferSize FDS_DOMAIN_NAMBEomainList
)i

BufferSized input/output

Input A pointer to the location where the size of the DomainListbuffer
(in bytes) is stored.

Output
When this APl completes successfully, the data in the location
pointed to by BufferSizeis replaced with the size of the returned
data in bytes or the required buffer size in bytes if the input buffer
is too small. In the latter case, the list of domains is not returned.

DomainList® Output
Pointer to the location where the array of FDS_DOMAIN_NAME elements
is stored. Each FDS_DOMAIN_NAME structure contains a domain name.

FdsGetDomainList() can be called from an application running on the acting
primary distributor only. It returns a list of all the domains in the system and their
update status.

FdsGetDomainList() returns the following values:
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-60 FDSERR_CONFIG
-360 FDSERR_NODE_TYPE

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_DOMAIN_NAME DomainList[2]; // List of Domains
unsigned int BufferSize = sizeof(DomainList); // Size of DomainList

/I Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = Fdsinit();

/I 1f initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Call FdsGetDomainList API to get a list of all tbenBins
Chapter 6. Data Distribution 143
I
rc = FdsGetDomainList(&BufferSize, DomainList);
printf("FdsGetDomainList completed with return code = (%d)
" ---> Domain #1 = (%s)-<\n"
" ---> Domain #2 = (%s)-<\n",
rc,
DomainList[0], // Domain #1
DomainList[1]); // Domain #2

}/ end if
else
{
I else process errors
}
FdsGetDomainNodes()
Purpose
Obtain the list of nodes that are in a broadcast domain.
Syntax
#include <fds/dist.h>
long FdsGetDomainNodes(const FDS_DOMAIN_NviainNameunsigned intBufferSize
FDS_NODE_STAN®deList);
Parameters
DomainNamed input
Indicates the broadcast domain name that contains the nodes.
BufferSized input/output
Input The size of the NodeListbuffer in bytes.
Output
The size of the returned data in bytes or the required buffer size in
bytes if the input buffer is too small. In the latter case, the list of
node IDs is not returned.
NodeListd output
Pointer to the location where the array of FDS_NODE_STATE elements
is stored. Each FDS_NODE_STATE structure contains a node ID.
Remarks

FdsGetDomainNodes() can be called from an application running on the acting

primary distributor only. It returns the list of nodes that belong to a broadcast
domain.

Error Conditions

FdsGetDomainNodes() returns the following values:
-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-60 FDSERR_CONFIG

-120 FDSERR_DOMAIN_NAME

-130 FDSERR_DOMAIN_NOT_FOUND

-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include<fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; /I Return from API Call
/ Domain Name to query
FDS_DOMAIN_NAME DomainName = "DOMAINXxX";
FDS_NODE_STATHodeList[100]; /I Node List for Domain
unsigned int BufferSize = sizeof(Nobist); /I Size of NodelList
Il Initialize DDS. Could use FdsInit2() instead of Fdslnit().
rc = Fdslnit();
/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Call FdsGetDomainNodeAPI to get a list of all the Node IDs in
/I DOMAINXx
I
rc = FdsGetDomainNodes(DomainName, &BufferSize, NodeList);
printf("FdsDomainName completed with return code = (%)
" DomainName = (8\n"
" Node List\n"
" NodeList[0}- NodelD = (%s), state = (%d)
" NodeList[1}- NodelD = (%s), state = (%d)
" NodelList[2}- NodelD = (%s), state = (%d)
" NodelList[3}- NodelD = (%s), state = (%d)
" NodeList[4}- NodelD = (%s), s&at= (%d)n",
rc,
DomainName,
NodeList[0].Name, NodeList[0].State, // Node_1
NodeList[1].Name, NodeList[1].State, // Node_2
NodeList[2].Name, NodeList[2].State, // Node_3
NodeList[3].Name, NodeList[3].State, // Node_4
NodeList[4].Name, NodeList[4].Stat¢/)Node_5
}/lend if
else

{

/I else process errors

}

FdsQueryBackupState()

Purpose
Query the state of the backup distributor.

Syntax

#include <fds/dist.h>

long FdsQueryBackupState(fi@itate);

Parameters

Stated output
Pointer to the location of the state of the backup distributor. Possible
values are:
FDS_ACTIVE
Fully reconciled
FDS_JOINING
Reconciling
FDS_INACTIVE
Not online

Remarks

FdsQueryBackupState() can be called from an application that is running on
the primary distributor only.

Error Conditions

FdsQueryBackupState() returns the following values:
-60 FDSERR_CONFIG
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; /I Return from API Call

int Stae = 0; // Initialize State

/I Initialize DDS. Could use FdslInit2() instead of FdslInit().
rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS))
{

1

/I The following call to FdsQueryBackupState APl must be issued from
/I the Acting Primary Distributor

I

rc = FdsQueryBackupState(&State);

printf("FdsQueryBackupState completed with return
code = (%d)n", rc);

if (rc == FDS_SUCCESS)

switch (State)

case FDS_ACTIVE:
printf("... Backup State = FDS_ACTIME"),.
break;
case FDS_JOINING:
printf("... Backup State = FDS_JOINING"),.
break;
case FDS_INACTIVE:
printf("... Backup State = FDS_INACTIWR");.
break;
default:
printf("No state was returned from FdsQueryBackupStat8;
break;
} /I end switch
Y/ end if
Y/ end if
else

{

I else process errors

}

FdsQueryDistribution()

Purpose
Query a distribution directory entry for a file or subdirectory.
Syntax
#include <fds/dist.h>
long FdsQueryDistribution(const cht&dsPath *itindicator,
int *DomainType FDS_DOMAIN_NAME
DomainName inDistFrequency
int *Scope);
Parameters

OsPathd input Indicates the file or subdirectory path name. OSPath can be a
logical name, but it must resolve to a file or subdirectory on the local node,
or to a retail path specification that includes either the role name or the
node I D of the acting primary ca&istributor
Nameso for more information.

Dirindicatord output
Indicates whether the entry refers to a file or a subdirectory. Possible
values are:
FDS_FILE
Indicates that the entry refers to a file
FDS _DIRECTORY
Indicates that the entry refers to a subdirectory

DomainTyped output
Indicates the domain type. Possible values are:
FDS_MIRRORED

Remarks

Error Conditions

Examples

Indicates that the domain type is a mirrored domain
FDS_BROADCAST
Indicates that the domain type is a broadcast domain

DomainNamed output
The broadcast domain name is returned if the entry is for a
broadcast domain. Otherwise, the value is undefined.

DistFrequencyd output
Indicates the distribution frequency. Possible values are:
FDS_DOU
Indicates distribute on update
FDS_DOC
Indicates distribute on close

Scoped output
Indicates the scope qualifier. Possible values are:
FDS_SCOPE_FILE
Only the files in the directory are distributed
FDS_SCOPE_UNDEFINED_FOR_FILE
FDS_FILE was specified for DirIndicator
FDS_SCOPE_TREE
All files and subdirectori es ar e di stri
for information about specifying a scope for
FDS_SCOPE_TREE.

FdsQueryDistribution() queries a distribution directory entry for a file or
subdirectory specified by OsPath.

FdsQueryDistribution() returns the following values:
-60 FDSERR_CONFIG

-70 FDSERR_CORRUPT

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-410 FDSERR_OVERFLOW

-500 FDSERR_REMOTE

#include <stdio.h>
#indude <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
int Directorylndicator = 0O; /I Directory Indicator
FDS_DOMAIN_NAME DomainName; // Domain Name

int DomainType = 0; /l Domain Type

int DistributionFequency = 0; // Distribution Frequency

int Scope =0; /I Scope

/I Initialize DDS. Could use FdslInit2() instead of FdslInit().

but ed.

See

rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{

1
/I The following calls to FdsQueryDistribution API must be issued from
I/ the Acting Primary Distributor

I
I
/I Query the Distribution of file "ddouitemrec.dat"
1
rc = FdsQueryDistribution("ddou\itemrec.dat",
&Directorylndicator,
&DomainType,
DomainName,
&DistributionFrequency,
&Scope);
printf("FdsQueryDistribution completed with return code = (%ul).
" Directory Indicator = (%d)"
" Domain Type = (%d)"
" Domain Name = (%s)'
" Distribution Frequency = (%d)'
" Scope = (%",
rc,
DirectoryIndicator,
DomainType,
DomainName,
DistributionFrequency,

Scope);
I
/I Query the Distribution of directory "ddoc"
I

rc = FdsQueryDistribution(ddod\",
&Directorylndicator,
&DomainType,
DomainName,
&DistributionFrequency,
&Scope);
printf("FdsQueryDistribution completed with

return code = (%d)n”

" Directory Indicator = (%"

" Domain Type = (%0d)"

" Domain Name = (%As)'

" Distribution Frequency = (%d)'

" Scope = (%",

rc,

DirectoryIndicator,

DomainType,

DomainName,

DistributionFrequency,

Scope);

}/lend if
else

{

/I else process errors

}

FdsSetDistribution()

Purpose
Modify the distribution characteristics of files and subdirectories.
Syntax
#include <fds/dist.h>
long FdsSetDistribution(const charOsPath int Dirindicator intDomainType
const FDS_DOMAIN_NAMBmainNameint DistFrequencgy
int Scope);
Parameters

OsPathd input Indicates the file or subdirectory path name. OSPath can be a
logical name, but it must resolve to a file or subdirectory on the local node,
or to a retail path specification that includes either the role name or the
node ID of the acting primary distributor. The resolved name, not the
logical name, is stored in the distribution directory (distribution
characteristics are associated with resolved-to names, not logical names).
See fAiFile Names and Queue NamesoOo for mor e

Note: DDS supports the distribution of files up to a maximum size of 4 GB.

DirIndtatord input
Indicates whether the entry refers to a file or subdirectory. Valid values
are:
FDS_FILE
Indicates that the entry refers to a file
FDS_DIRECTORY
Indicates that the entry refers to a directory

This characteristic cannot be changed for an existing distribution
directory entry.

DomainTyped input
Indicates the domain type. Valid values are:

FDS_MIRRORED
Indicates a mirrored domain.

FDS BROADCAST
Indicates a broadcast domain. The file or subdirectory is
distributed to the acting backup distributor and all nodes in the
specified broadcast domain.

FDS_LOCAL
Indicates a local domain. The file or subdirectory is removed
from the distribution directory and all image copies are deleted.
Paths (the parent directory of a file or subdirectory) are not
deleted at image nodes. An attempt to change an individual file
to FDS_LOCAL is rejected if the file exists as part of a
distributed subdirectory.

For an existing entry in the distribution directory, this characteristic can

only be changed to FDS_LOCAL, which deletes the entry from the
distribution directory.

DomainNamed input
Indicates the broadcast domain name if the entry is for a broadcast
domain. This is the case whether the caller wants to add a distributed
object, modify the characteristics of an existing distributed object, or make
a distributed object non-distributed by setting DomainTypeto
FDS_LOCAL. This parameter is ignored if DomainTypeis
FDS_MIRRORED.

This characteristic cannot be changed for an existing distribution
directory entry.

DistFrequencyd input
Indicates the distribution frequency. Valid values are:
FDS_DOU
Indicates distribute on update
FDS_DOC
Indicates distribute on close

This characteristic can be changed for an existing distribution
directory entry.

Scoped input
Indicates the scope qualifier. Valid values are:

FDS_SCOPE_FILE
Only the files in the directory are distributed.

FDS_SCOPE_TREE
Al'l files and subdirectories are dist
for information about specifying a scope of
FDS_SCOPE_TREE.

FDS_SCOPE_UNDEFINED_FOR_FILE
FDS_FILE was specified for DirIndicator

This characteristic cannot be changed for an existing distribution
directory entry.

Remarks

FdsSetDistribution() updates a distribution directory entry for a file or
subdirectory specified by OsPath and distributes the file or subdirectory.

If OsPath specifies a file, the file must not be open. If OsPath specifies a
directory, the directory must not contain any open files, nor can any descendant
subdirectory contain any open files, even if the scope qualifier is
FDS_SCOPE_FILE.

Note: No file or directory in the directories where DDS is installed (or the
directory pointed to by the WorkDirectory configuration keyword) can be
distributed.

The file or subdirectory identified by OSPath must exist when this APl is called.

Error Conditions

Examples

One exception is that a distribution directory entry can be removed (the domain
type set to local), even if the corresponding file or subdirectory does not exist on
the acting primary distributor. Such a situation should not normally occur.

The distribution directory entry is deleted by data distribution when the
corresponding file or subdirectory is deleted.

If there is no previous entry in the distribution directory for OsPath, an entry is
created. Otherwise, the only modifications that can be made are changing the
domain type to FDS_LOCAL (remove the entry from the distribution directory) or
changing the distribution frequency.

There can be no more than one entry for a particular file or subdirectory in the
distribution directory. That is, a file or subdirectory can be distributed to no more
than one distribution domain. An entry for a file or subdirectory cannot be added to
the distribution directory if the file or subdirectory is contained in a directory that is
already distributed. An entry for a directory cannot be added to the distribution
directory if it contains a file that is already distributed.

In all valid cases where FDS_LOCAL is not specified for DomainType the file is
distributed by this API to all nodes in the domain.

To force distribution for a particular file or subdirectory, query its directory entry
using FdsQueryDistribution() and pass the results to FdsSetDistribution(). If
FdsSetDistribution() is called for an existing entry and no attributes are changed,
the effect is the same as forcing the distribution of that file or subdirectory. The file
or subdirectory will be distributed to all nodes, even if the file or subdirectory is
already current on those nodes.

The root directory of a drive cannot be added to the distribution directory.

FdsSetDistribution returns the following values:
-10 FDSERR_ACCESS

-60 FDSERR_CONFIG

-80 FDSERR_DIR_INDICATOR

-90 FDSERR_DISK

-110 FDSERR_DIST_FREQ

-120 FDSERR_DOMAIN_NAME

-130 FDSERR_DOMAIN_NOT_FOUND

-140 FDSERR_DOMAIN_TYPE

-170 FDSERR_EXISTS

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-360 FDSERR_NODE_TYPE

-375 FDSERR_NOT_DISTRIBUTED

-410 FDSERR_OVERFLOW

-500 FDSERR_REMOTE

-555 FDSERR_SCOPE

-560 FDSERR_SEQUENCE

#include <stdio.h>

#include <fds/fds.h>
#include <fds/file.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
long FileHandle = 0; // Keyed File Handle

/' Initialize DDS. Could use FdsInit2() instead of Fdslnit().
rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS))

{

1

/I The following calls to FdsSetDistribution API must be issued from
I/ the Acting Primary Distributor

1

I

/I Create a keyed file to be distributed

I

rc = FdsCreateKeyedFile(&FileHandle,
"d:\\dou\itemrec.dat", /I Keyed file to create
10, I/l Key Size
65, Il Record Size
512, /l Block Size
10, /I Number of Blocks
0, // Randomizing Divisor
2, // Chaining Threshold

FDS_FILE_EXIST_REPLACEjeate Flag
if (rc = FDS_SUCCESS))

printf("FdsCreateKeyedFile failed with return code = (Yati)rc);
return (-1);

}/ end if

I

/I Close the file before distributing
1

rc = FdsCloseKeyedFile(FileHandle, FDS_FILE_CLOSE_TYPE_FULL);
if (rc = FDS_SUCCESS)
{
printf("FdsCloseKeyedFile failed with return code = (%d)rc);
return (-2);
}/ end if
I

/I Now distribute a file to be Mirrored with a distribution type of
/I distribute on update (DOU)

Il

rc = FdsSetDistribution(ddou\itemrec.dat", // OS Path
FDS FILE, /1 Distributed File
FDS_MIRRORED, // Mirrored Distribution
"DOMAINXX", // Domain name ignored
FDS DOU, /I Distribute on Update

FDS_SCOPHLE);// Scope ignored

printf("FdsSetDistribution completed with return code = (%ul).
re);

I

/I Now distribute a directory in BroadcaBtomain DOMAINyy with a
/I distribution type of distribute on close (DOC)
1

rc = FdsSetDistribution(\ddoa\", // OS Path Specification
FOs_DIRECTORY, /I Distributed Directory

FDS_BROADCAST, /I Broadcast Distribution
"DOMAINyy", // Broadcast Domain name
FDS_DOC, /I Distribute on Close

FDS_SCOPE_FILE); I/ File Scope
printf("FdsSetDistributiomompleted with return code = (%",
rc);
Y end if
else

/I else process errors

}

FdsSetupDistMonitor()

Purpose
Prepare to receive notification of data-distribution events.

Syntax

#include <fds/dist.h>

long FdsSetupDistMonitor(const cHd@@Name);
Parameters

QName d input

Indicates the IPC queue name where the results are to be placed.

Remarks

FdsSetupDistMonitor() can be called from an application that is running on the
acting primary distributor or acting backup distributor only. It notifies the Data
Distribution component of an IPC queue that can be used for notification of data-
distribution, role-related state changes. This information is saved by the Data
Distribution component and control is returned.

The following messages are placed in the specified queue to indicate
data-distribution state changes:

The local node is in transition to the acting primary distributor role.
The local node is the acting primary distributor.
The local node is in transition to the acting backup distributor role.
The local node is the acting backup distributor.

= = =8 =N

One of these messages is immediately generated as the result of calling
FdsSetupDistMonitor.

Data Distribution does not perform validation on QName. If QName does
not identify a valid IPC queue, the notification is lost and no error is
returned.

Error Conditions

FdsSetupDistMonitor() returns the following values:
-60 FDSERR_CONFIG
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/ipc.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size

long QueueHandle = 0; /I Queue Handle

char ReadBuffer[100]; /l Message from Read Queue
unsigned int BufferLength = sizeof(ReadBufiél)ength of Message

long Timeout = 120; /I Time out value

int MsgType; Il Type of Message Read
FDS_DIST_STATEDistStateptr; // Role State structure

/I Initialize DDS. Could use FdsInit2() instead of Fdslnit().
rc = Fdslnit();
/I 1f initialization was successful
if (rc == FDS_SUCCESS)
{
rc = FdsCreateQ("MyQueue", MaxQSize, &QueueHandle);
if (rc == FDS_SUCCESS)
{
)
/I The following call to FdsSetupDistMonitor API must be issued from
/I either the Acting Primary or the Acting Backup Distributor
I
rc = FdsSetupDistMonitor("MyQueue");
printf("FdsSetupDistMonitor completed with return code = (%d).rc);
if (rc == FDS_SUCGHS
{
1

// Read the message returned from calling FdsSetupDistMonitor

1

/I The messages will be written to "MyQueue". To read the

/l message in MyQueue" use the FdsReadQ API. The message

I type for these messages is FDS_DIST_STATE_NOTIFY_MSG. See
/I the FdsReadQ API for more information.

1

rc = FdsReadQ(QueueHandle, &BufferLength, ReadBuffer,
Timeout, &MsgType);
DistStateptr = (FDS_DIST_STATE*) ReadBuffer;
printf("MyQueue completed with return code = (%d).
" ----MyQueue contains:---\n"
" - Role State = (%dh"
"-NodelD = (®\n",
rc,
DistStateptr>RoleState,
DistStateptr>NodelD);

rc = FdsCloseQ(QueueHandle);
}/end if
Y/l end if
else

{

/I else process errors

}

FdsSetupSyncIDNotify()

Purpose
Prepare to receive notification of file or directory synchronization.
Syntax
#include <fds/dist.h>
long FdsSetupSyncIDNotify(const FDS_SYNSyhoID const chi§Name);
Parameters
SynclDd input
Indicates the synchronization ID.
QName d input
Indicates the IPC queue name where the results are to be placed.
Remarks

FdsSetupSyncIDNotify() can be called from an application running on any node.
It notifies the Data Distribution component of a synchronization ID and IPC
queue name. This information is saved by Data Distribution and control is
returned to the caller.

When the file or directory on the local node, associated with synchronization 1D
SynclD, has been brought to the state identified by SynclD, the Data Distribution
component writes a message with the synchronization ID to the queue specified
by QName. If the local node is already at this state when this API is called, or has
been at this state and has had additional updates applied, this message is written
immediately to the queue. If additional updates have been applied, the
SequenceNumber portion of the returned SynclD may be higher than the
SequenceNumber provided on the call to FdsSetupSyncIDNotify. See
AFdsReadQ() o

for more information about the messages.

Data Distribution does not perform validation on QName. If QName does
not identify a valid IPC queue, the notification is lost and no error is
returned.

Using FdsCreateSynclD() and FdsSetupSyncIDNotify()

FdsCreateSynclD() is used to uniquely identify a specific set of updates to a
distributed sequential, keyed, or binary file. FdsSetupSyncIDNotify() is used

to determine when those updates have been distributed to a particular
node.

Consider the following example:

The application APPLA, which runs on the backup distributor, opens and
updates a file called FILE.DAT, which resides on the primary distributor. The
distribution frequency for FILE.DAT is distribute on update (DOU).

Note: Only the prime copy of a distributed file can be modified. The prime
copy of a distributed file resides on the acting primary distributor.

Another application, APPLB, runs on Subordinate 1, a subordinate node in the
domain. APPLB uses data from the image copy of FILE.DAT and needs to be
notified when the latest updates have been applied.

Figure 1 shows how APPLA issues a call to FdsCreateSynclD() to obtain the
synchronization identifier, sync_id and sends it to APPLB (via IPC). APPLB
issues a call to FdsSetupSyncIDNotify() to receive notification when the
updates have been applied to the copy of FILE.DAT residing on the
Subordinate 1 node.

Primary Distributor

Backup Distributor

APPLA
Cipan & Mleudat
Write dain
Writs data
FetsC raatayrc| N
& Mk dat Close e Meudat
a—
saw_ld to APPLE ivia IPC)
Subordinate 1 L ’
APPLB
Craste

Fdﬁm&wlﬂhbur:h'_qm.w_m
s rom miy_cuels
Wihen notication arives

Opon ard procsss Nke.dat

& Ml dat

Figurel. Using FdsCreateSyncID() and FdsSetupSyncIDNotify()

In Figure 1:

1 APPLA on the backup distributor opens E:FILE.DAT on the primary distributor
and writes data to the file. Because the distribution frequency is distribute on
update, APPLA issues a call to FdsCreateSyncID() after the updates have

Error Conditions

Examples

been made.

Note: If the distribution frequency for file.dat were distribute-on-close
(DOC), APPLA would first flush the file by calling FdsCloseKeyedFile() or
FdsFlushBinFile() and then calling FdsCreateSyncID().

1 FdsCreateSynclD() returns a synchronization identifier, sync_id, which
uniquely identifies these changes to FILE.DAT. APPLA is responsible for
sending sync_id (via IPC) to any other programs that may need it.

1 APPLB on Subordinate 1 sets up a queue called my_queue. (This queue can
be used by APPLB to receive a variety of messages.) When APPLB receives
sync_id from APPLA, APPLB issues a call to
FdsSetupSyncIDNotify(my_queue, sync_id). After DDS applies the updates
to FILE.DAT on Subordinate 1, a notification message is written to
my_queue.

APPLB, based on the parameters passed to FdsReadQ(),
determines how many times my_queue will be queried and how
long to wait for each query.

Note: The calling program must ensure that the correct queue name is passed
to FdsSetupSyncIDNotify(). If the queue name is incorrect, no error is
returned.

FdsSetupSyncIDNotify() returns the following values:
-60 FDSERR_CONFIG
-570 FDSERR_SYNCID

#include <stdio.h>
#include <fds/fds.h>
#include <fdsfoc.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_SYNC_ID SyncID; /I SyncID received from the primary
long QueueHandle = 0; /I QueueHandle

unsigned long MaxQSize = 500; // Maximum Queue size

/I Initialize DDS. Could use FdslInit2() instead of FdsInit().
rc = Fdslnit();
/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1

/I The following call to FdsSetupSyncIDNotify API can be invoked from
/I an application running on any node; however, it is usually called

/I on image nodes for notification of file updates on the primary.

I
I

/I A queue was created on this node and the SyncID generated from
I/l the FdsCreateSynclID call has been read from it. The distribute

/I on update file, "d\dou\itemrec.dat", was opened on the primary.

/I (See the example in the FdsCreateSyncID API for more information
[/l about what occurs on the primary node.)

I

I
/I Create "MyQueue" for SyncID Notify
1
rc = FdsCreateQ("MyQueue", MaxQSize, &QueueHandle);
if (rc == FDS_SUCCESS)
{

1

/I Call FdsSetupSyncIDNotify API to be nadifivhen changes

// to "d:\dou\itemrec.dat" are distributed. The input SyncID

/I parameter was sent to this node by the application on

/l the primary via a queue.

1

/I The messages will be written to "MyQueue". To read the

Il message in "MyQueue" use thel§ReadQ API. The message type
// for these messages is FDS_DIST_SYNC_NOTIFY_MSG. See the
/I FdsReadQ API for more information.

1

rc = FdsSetuynclDNotify (&SynclID, "MyQueue");
printf("FdsSetupSyncIDNotify completed with return code = (%4).
rc);
}/end if
Y end if
else

{

/I else process errors

}

Chapter 7. Name Services

This chapter describes the Name Services component. It also describes the
following APls, which are available for the Name Services component:

FdsChangeLogicNm() & Change a logical name
FdsCreateLogicNm() & Create a logical name
FdsDeleteLogicNm() & Delete a logical name
FdsResolveLogicNm() o Resolve a logical name
FdsResolveRoleNm() & Resolve a role name
FdsSetResetRole() & Assume or relinquish a role name
FdsVerifyRole() & Verify that the local node is acting a role

=A =4 =4 -4 -8 -89

The Name Services component provides a name-resolution capability,
allowing applications to use logical names instead of hard-coded file names,
IPC queue names, and node IDs. These logical names are dynamically
resolved when the application runs.

Some names are rarely changed, such as the name of a configuration file. While
this name is not likely to change, it is still desirable to avoid using the name in an

application program. The use of a logical name allows the file name to be
changed without having to rebuild the application. A logical name has the
following format:

<name>

Where nameis 1to FDS_MAX_LOGICAL_NAME_SIZE-2 characters and
the less-than and greater-than characters (< and >) are required delimiters.

Others names are more dynamic, for example, the node ID of the primary
distributor. This name changes whenever the backup distributor takes over for
the primary distributor. In this case, a role (the primary distributor) is assumed by
a particular node. A logical name can be used to identify this role, and is termed
the role name. A role name has the following format:

<name:>

Where nameis 1 to 8 characters, the less than and greater than characters (<
and >) are required delimiters, and double colons (::) indicate that this is a role
name.

An instance of the Name Services component exists on each node. Each

instance maintains a cache of:

1 Logical names read from the logical-names file at initialization

1 Logical names and role names that have been set for the local node via an
API

1 Allrole names that have previously been resolved at the local node

This cache of logical names is unique to each node and global to all processes on
a node. Therefore, any application process on the local node using a logical name
will have the name resolved to the same string, whereas an application on a
remote node could have the same logical name resolve to a different string. For

example:

Resolved Name Resolved Name Resolved Name
Logical Name on Node 1 on Node 2 on Node 3
drive C: D: C:

Creating Logical Names

Logical names are created through the DDS Configuration and Response File
Utility or the FdsCreateLogicNm() API. The logical name represents a string of
characters defined by the person or process creating the logical name. This string
is called the resolved name The resolved name can contain other logical names.
If a resolved name contains a logical name, the logical name must be delimited by
the less-than and greater-than characters (< and >). For example, the following
logical names definitions are valid:

Logical Name Resolved Name

<drive> C:

<prices> \dept72\prices.dat

<pricefilel> <drive><prices>

<pricefile2> <FDSFDXAP::><drive><prices>
<badcheck> \secur\badcheck.dat
<fileserver> fsnode::

<badcheckfile1> <drive><badcheck>

<badcheckfile2> <fileserver><drive><badcheck>

Note: FDSFDXARSs the reserved role name for the acting primary
controller. Because it is a role name, it is also a logical name and
must be delimited by the less than and greater than characters (<
and >).

In the previous example, the double colons (::) are required delimiters for the
resolved name of the logical name, fileserver These delimiters separate the
node ID from the path name.

The same results could have been achieved by the following logical-
name definitions:

Logical Name Resolved Name
<fileserver> fsnode
<badcheckfile2> <fileserver>::<drive><badcheck>

There are two types of logical names for DDS:

Persistent logical names
Persistent logical names are retained in memory across a restart of
DDS. Persistent logical names must be defined using the DDS
Configuration and Response File Utility. They are stored in the
logical-names file and loaded into memory when DDS is initialized.
Refer to the IBM Distributed Data Services/Controller Services Feature for
Windows Installation and Configuration Gufdeinformation about
creating logical names to be used with IPC and File Services.

Temporary logical names
Temporary logical names are not retained across a restart of DDS.
Temporary logical names are defined by the FdsCreateLogicNm()
API, and are created by the application for special purposes. They
are stored in memory and are lost when an IPL is performed at a
node or when DDS is restarted.

Logical-Names File

The logical-names file contains the persistent logical names that are to be

initially loaded into the Name Services cache. This file can be changed using the

DDS Configuration and Response File Utility. Refer to the IBM Distributed Data
Services/Controller Services Feature for Windows Installation and Configuration
Guidefor more information about the management and distribution of the
logical-names file. DDS must be restarted on a node for the logical name

changes to take effect for that node.

Changing Logical Names

Persistent logical-name definitions contained in the logical names file are changed
using the DDS Configuration and Response File Utility. DDS must be restarted on
a node for the logical name changes to take effect for that node. Refer to the IBM
Distributed Data Services/Controller Services Feature for Windows Installation and

Configuration Guidér more information about the Configuration and Response
File Utility.

Persistent and temporary logical names stored in memory are changed using
the FdsChangeLogicNm() API. This API has no effect on the persistent logical-
name definitions contained in the logical names file. These changes are not
retained across IPLs or restarts of DDS. The effect of this API is the same as
deleting an existing logical name and creating a new one.

Deleting Logical Names

Persistent logical-name definitions contained in the logical names file are deleted
using the DDS Configuration and Response File Utility. DDS must be restarted on

a node for the logical-name changes to take effect for that node. Refer to the IBM
Distributed Data Services/Controller Services Feature for Windows Installatidn
Configuration Guidéor more information about the Configuration and Response
File Utility.

Persistent and temporary logical names stored in memory are deleted using the
FdsDeleteLogicNm() API. This API has no effect on the persistent logical-name
definitions contained in the Logical-Names File. These deletions are not
retained across IPLs or restarts of DDS.

Logical Name Resolution

When the application calls the FdsResolveLogicNm() API, the Name Services
component resolves any logical names that appear in the input string. The only
exception to this is when a remote role name or node ID is encountered. In that
case, this API returns the error -500 FDSERR_REMOTE. Because this resource is
remote, it must be resolved on the remote node indicated by the role name or
node ID. Your applications must use the IPC component or the File Services
component to access the remote resource represented by this logical name.

The logical names in the input string to be resolved must be delimited by the less-

than and greater-than characters (< and >). The following table shows how the

FdsResol veLogicNm() API resolves the | ogical
Nameso.

In the previous example, the logical names <badcheckfile2:and <pricefile2>contain
an imbedded role name or node ID. Therefore, they must be used with the IPC
component or the File Services component, and cannot be resolved directly by the
application.

A null node ID indicates that the logical name resolved locally.

Creating Role Names

Although role names are conceptually logical names for a particular node, they are
not created by the FdsCreateLogicNm() API, nor can they be defined in the logical
names file (fdsIn.In). They are created by DDS or by your application by calling the
FdsSetResetRole() API on the node that is to assume the role.

Your application can create roles for its own use. For example, if you have one
node perform all of the communications with outside networks, you could assign it
the role name <GATEWAY::>. Role names that begin with FDS are reserved.

Role Name Resolution

When the application calls an IPC or File Services API using a logical name, the
Name Services component is indirectly called to resolve the logical name. If a
role name is found, role name resolution is performed for the application by DDS.
The application does not need to know the details of how a role is resolved.

However, application programmers should be aware that if a logical name contains
a role name, it is possible that some network communication might occur to
resolve the role. Under normal circumstances, the resolution of a role name should
take no longer than that of any other logical name. Under some circumstances,
however, the role-name information in the Name Services cache might become
outdated and have to be refreshed. If the application programmer needs to resolve
arole to a node ID, the FdsResolveRoleNm() should be used.

Verifying Role Names

An application can determine whether it is running on a node that is acting a role
by using the FdsVerifyRole() API. If this API returns O (zero), the role name is
local. If it returns the error -550 FDSERR_ROLE_NOT_FOUND, the role name is
not local.

FdsChangeLogicNm()

Purpose

Syntax

Parameters

Change a logical name.

#include <fds/names.h>

long FdsChangeLogicKloonst char *LogicalName,
const char *ResolvedName);

LogicalNamed input
Specifies the logical name to be changed in the Name Services
component. This parameter points to a null-terminated string. The string
length, including the less than and greater than (< and >) delimiters, must
not be more than the value of FDS_MAX_LOGICAL_NAME_SIZE. Logical
names cannot be a null string and cannot start with the prefix FDS. Logical
names cannot end with two colons (::). The logical name must be
delimited by the less-than and greater-than characters (< and >).

ResolvedNamed input
Specifies the string that the logical name represents. This parameter
points to a null-terminated string. The string length must not be more
than the value of FDS_MAX_RESOLVED_NAME_SIZE. Resolved
names cannot be a null string. The name to be resolved can have other

logical names imbedded; if it does, the logical name must be delimited by
the less-than and greater-than characters (< and >).

Remarks

FdsChangeLogicNm changes the resolved name for a logical name. This API
only affects the Name Services component on the local node. It does not
change a logical name in the logical names file. Therefore, persistent logical
names that are listed in the logical names file are reset to their original values
when DDS is restarted.

Applications can use this API to change the resolved name of temporary and
unreserved persistent logical names in the Name Services component on the local
node. The DDS Configuration and Response File Utility must be used to
permanently change the persistent logical names. Refer to the IBM Distributed
Data Services/Controller Services Feature for Windows Installation and
Configuration Guidér more information about permanently changing persistent
logical names.

Error Conditions

FdsChangeLogicNm returns the following values:
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-510 FDSERR_RESOLVED_NAME

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc=0; // Return from API call
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{
1
/I Change the definition of <drive> in memory. This does not
/I affect any defintion in the logical names file.
I
rc = FdsChangeLogicNm("<drive>", "e:");
printf("FdsChangeLogicNm completed with return code = (¥4).
re);
}/lend if
else
{
/I else process errors
}

FdsCreateLogicNm()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Examples

Create a logical name.

#include <fds/names.h>

long FEIsCreateLogicNm(const charLogicalName const char
*ResolvedNamé;

LogicalNamed input
Specifies the logical name to be created in the Name Services
component. This parameter points to a null-terminated string. The string
length, including the less than and greater than (< and >) delimiters, must
not be more than the value of FDS_MAX_LOGICAL_NAME_SIZE. A
logical name cannot be a null string and cannot start with the prefix FDS.
A logical name cannot contain two consecutive colons (::). The logical
name must be delimited by the less than and greater than characters (<
and >). These delimiters (< and >) may not be imbedded within the
logical name.

ResolvedNam& input
Specifies the string that the logical name represents. This parameter
points to a null-terminated string. The string length must not be more
than the value of FDS_MAX_RESOLVED_NAME_SIZE. A resolved
name cannot be a null string. The name to be resolved can have other
logical names imbedded. If it does, the logical name must be delimited by
the less than and greater than characters (< and >).

FdsCreateLogicNm() adds a temporary logical name to the Name Services
component. This API affects only the Name Services component on the local
node. Applications can call this API to create a logical name to be used in
resolving file names, IPC queue names, or other special names. Temporary logical
names are created in memory and are not persistent across IPLs or restarts of
DDS. Persistent logical names must be created using the DDS Configuration and
Response File Utility.

Logical names are used by the Name Services component to resolve names.
Refer to the IBM Distributed Data Services/Controller Services Feature for
Windows Installation and Configuration Gufdemore information about creating
logical names to be used with IPC and File Services.

FdsCreateLogicNm() returns the following values:
-170 FDSERR_EXISTS

-300 FDSERR_LOGICAL_NAME

-510 FDSERR_RESOLVED_NAME

#include <stdio.h>

#include <fds/fds1>
#include <fds/names.h>
#include <fds/errno.h>

long rc=0; /I Return from API call
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
1
/I Create a temporary logical name for the drive
I

rc = FdsCreateLogicNm("<drive>", "d:");
printf("FdsCreatehgicNm completed with return code = (%d.,

re);
1
/I Create a temporary logical Nm for the Nm of the price file
I

rc = FdsCreateLogicNm("<prices*\régisterdata\prices.dat");
printf("FdsCreateLogicNm completed with return code = (944).

rc);
I
/I Create a temporary logical Nm for the price file
1

rc = FdsCreateLogicNm("<pricefile>", "<drive><prices>");

printf("FdsCreteLogicNm completed with return code = (%d},
rc);

1

/I Create a temporary logical Nm for the master price file
/I on the primary controller using roleiN <FDSFDXAP::>
I

rc = FdsCreateLogicNm("<masterpricefile>",
"<FDSFDXAP::><drive><prices>");
printf("FdsCreateLogicNm completed with return code = (964)
re);

I
/I Create a temporary logical Nm for the price file on
/ node REG51

1

rc = FdsCreateLogicNm("<term51pricefile>",
"REG51::<drive><prices>");
printf("FdsCreateLogicNm completed with return code = (944).
re);
Y end if
else

{

I else process errors

}
FdsDeleteLogicNm()

Purpose
Delete a logical name.

Syntax

Parameters

Remarks

Error Conditions

Exampl es

#include <fds/names.h>

long FdsDeleteLogicNm(const chlaogicalName);

LogicalNam@ input
Specifies the logical name to be deleted from the Name Services
component. This parameter points to a null-terminated string. The string
length, including the less than and greater than (< and >) delimiters, must
not be more than the value of FDS_MAX_ LOGICAL_NAME_SIZE. A
logical name cannot be a null string and cannot start with the prefix FDS.
A logical name cannot end with two colons (::). The logical name must be
delimited by the less-than and greater-than characters (< and >).

FdsDeleteLogicNm() deletes a logical name from the Name Services component.
This API affects only the Name Services component on the local node. This API
does not delete a logical name from the logical-names file. Therefore, persistent
logical names listed in the logical-names file are added back to the Name
Services component when DDS is restarted.

Applications can use this API to remove temporary and unreserved persistent
logical names from the Name Services component on the local node. The
DDS Configuration and Response File Utility must be used to permanently
remove persistent logical names. Refer to the IBM Distributed Data
Services/Controller ServiceBeature for Windows Installation and
Configuration Guidér more information about removing persistent logical
names.

FdsDeleteLogicNm() returns the following values:
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND

#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc=0; // Return from API call
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdsinit();

/I If initialization was successful
if (rc == BS_SUCCESS)
{
I
/I Delete the definition of <drive> in memory. This does not
/I affect any defintion in the logical names file.
I
rc = FdsDeleteLogicNm("<drive>");
printf("FdsDeleteLogicNm completed with return code = (Yatl).
rc);

}/ end if
else

/I else process errors

}

FdsResolveLogicNm()

Purpose

Syntax

Parameters

Remarks

Resolve a logical name.

#include <fds/names.h>

long FdsBsolveLogicNm(const chdnputString char*OutputString unsigned int
*QutputStringLen);

InputStringd input
Points to the null-terminated input string that is to be resolved.
Imbedded logical names must be delimited by the less-than and
greater-than characters (< and >).

OutputStringd output

Points to the buffer where the resolved string will be stored.
OutputStringLer® input/output

Input A pointer to the location where the length of the buffer
parameter is O (zero) when the APl is called, the error
-20_ADDRESS will be returned.

Output

When this APl completes successfully, the data in the location
pointed to by OutputStringLeris replaced with the length of the
null-terminated string placed in OutputStringThis length
includes the null terminator.

If this API returns the error -40 FDSERR_BUFFER_SIZE,
this parameter is set to the required buffer size.

FdsResolvelLogicNm() submits a string to the Name Services component for
resolution. This API provides a simple, string-substitution function. It does not
allow resolution of remote role names or node IDs. All imbedded logical names
are resolved from left to right. If an undefined logical name is encountered, the -
310 FDSERR_LOGICAL_NAME_NOT_FOUND error is returned.

If a remote role name or node ID is encountered, this API returns the -500
FDSERR_REMOTE error because the imbedded role name or node 1D
indicates that this resource is remote; the resource must be resolved on the

Error Conditions

Examples

remote node indicated by the role name or node ID. Your applications must
use IPC or File Services to access the remote resource represented by this
logical name.

Because the resource is local, resolution will If a local role name or
node ID is encountered, it is resolved to a null string because the
imbedded role name or node ID indicates that this resource is
local. continue until complete or until an error is encountered. In the
case where InputStringresolves to only a local node ID, the buffer
pointed to by OutputStringwill contain a null string.

The logical names in the input string to be resolved must be
delimited by the less-than and greater-than characters (< and >). If
no logical name is found in InputStringthe string is copied to the
buffer pointed to by OutputString

To determine the local node ID, use the FdsQueryConfig() API.

FdsResolveLogicNm() returns the following values:
-40 FDSERR_BUFFER_SIZE

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-410 FDSERR_OVERFLOW

-500 FDSERR_REMOTE

#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc =0; /I Return from API call

char OutBuffer[500]; // Resolve name buffer

unsigned int OutBufferSize = sizeof(OutBuffer); // Size of OutBuffer

/I Initialize DDS. Could use FdsInit2() instead of FdslInit()

rc = Fdslnit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Create a temporary logical nagrfor the drive
1
rc = FdsCreateLogicNm("<drive>", "d:");
1

/I Create a temporary logical Nm for the Nm of the price file

1
rc = FdsCreateLogicNm("<prices*\régisterdata\prices.dat");
1
/I Create a temporary logical Nm for the price file
1
rc = FdsCreateLogicNm("<pricefile>", "<drive>egst");

1

/I Create a temporary logical Nm for the master price file
[/l on the primary controller using role Nm <FDSFDXAP::>
I

rc = FdsCreateLogicNm("<masterpricefile>",
"<FDSFDXAP::><drive><prices>");

I
I/l Create a temporary logical Nm for the price file on
/l node REG51

1
rc = FdsCreateLogicNm("<term51pricefile>",
"REG51::<drive><prices>");

I

/I Change the definition of <drive> in memory. This does not
/I affect any defintion in the logical names file.

1

rc = FdsChangeLogicNm("<drive>", "e:");
1

/I Resolve the logical name for <prices>

I

OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<prices>", OutBuffer, &OutBufferSize);
printf("<prices> resolves to = (%s), OutBuffer);
I
/I Resolve the logical name for <pricefile>
1
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("iepfile>", OutBuffer, &OutBufferSize);
printf("<pricefile> resolves to = (%), OutBuffer);
1
/I Resolve the logical name for <masterpricefile>
I
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<masterpricefile>", OutBuffer,
&OutBufferSize);
if (rc == FDSERR_REMOTE)

printf("<masterpricefile> refers to @mote file. "

"Use file services to accesmn);
else

printf("<masterpricefile> resolves to = (%) OutBuffer);

I
/I Resolve the logical name for <term51pricefile
1
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<term51pricefile>", OutBuffer,
&OutBufferSize);
if (rc == FDSERR_REMOTE)
printf("<term51pricefile> refers to a remote file. "
"Use file services to accesant);
else
printf("<term521pricefile> resolves to = (%s), OutBuffer);
}/lend if
else

/I else process errors

}

The output of this code on a machine that is acting as the role <FDSFDXAP::>
and

has a node ID of REG51 is:

<prices> resolves taegisterdataprices.dat

<pricefile> resolves to \wegisterdataprices.dat

<masterpricefile> resolves to\eegisterdataprices.dat

<term51pricefile> resolves to\eegisterdataprices.dat

The output of this code on a machine that is not acting as the role <FDSFDXAP::>
and does not have a node ID of REG51 is:

<prices> resolves taoegisterdataprices.dat

<pricefile> resolves to \wegisterdataprices.dat

<masterpricefile> refers to a remofide. Use file services to access.

<term51pricefile> refers to a remote file. Use file services to access.

FdsResolveRoleNm()
Purpose
Resolve a role to a node ID.
Syntax
#include <fds/names.h>
long FdsResolveRoleNm(FDS_ROLE_RalEameint SeekMthod,
FDS_NODE_NAMHEddelD);
Parameters
RoleNamed input
Points to a null-terminated string of the role name to be resolved. The
role name must contain double colons (::) and cannot begin with the
characters FDS. The role name must be delimited by the less-than and
greater-than characters (< and >).
SeekMethodd input
Indicates where to look for the role name. This parameter is required.
Valid values are:
FDS_CACHE_ONLY
Search cache on the local machine only.
FDS_NETWORK_ONLY
Query all nodes in the DDS system.
FDS_CACHE_FIRST
Search cache on the local machine first. If no match is found,
query all nodes in the DDS system.
NodelDd output
Points to the location where the node ID string is stored.
Remarks

FdsResolveRoleNm() resolves a role to a node ID using cache, querying all
nodes in the DDS system, or both. The SeekMethodparameter controls how the

Error Conditions

FdsResolveRoleNm() returns the following values:

Examples

role resolution is done.

Local roles will always resolve to the local node ID regardless of the value of
the SeekMethodparameter.

-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND
-558 FDSERR_SEEK_TYPE

#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc=0; /I Return from API call
FDS_NODE_NAMButBuffer; /I Resolve role name buffer

// Initialize DDS. Could use FdslInit2() instead of FdsInit()

rc = Fdsinit();

/1 1f initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Resolve role name for <MyRole::> using only the cache
I
rc = FdsResolveRoleNm("<MyRole::>", FDS_CACHE_ONLY, &OutBuffer;);
switch (rc)
{
case FDS_SUGESS:
printf("<MyRole::> resolves to (%s)., OutBuffer);
break;
case FDSERR_ROLE_NOT_FOUND:
printf("The role name was not fouridh");
break;
case FDSERR_ROLE_NAME:
printf("The role name syntax is invahd);
break;
default:
printf("FdsResolveRoleNmompleted with return code = (%dh", rc);
break;
}
I
/I Resolve role name for <MyRole::> by querying all nodes in the
/I system to determine whether the role still exists
1
rc = FdsResolveRoleNm("<MyRole::>", FDS_NETWORK_ONLY, &OutBuffer;);
switch (rc)
{
case FDS_SUCCESS:
printf("<MyRole::> resolves to (%93)", OutBuffer);
break;
case FDSERR_ROLE_NOT_FOUND:
printf("The rolename was not foundn");
break;
case FDSERR_ROLE_NAME:

printf("The role name syntax is invakd-);
break;
default:
printf("FdsResolveRoleNm completed with return code = (¥t).c);
break;
}
I
/I Resolve role name for <MyRole::> using the cache first. If the
/I name is not in cache, query all nodes in the system to
/I determine whether the role still exists
I
rc = FdsResolRoleNm("<MyRole::>", FDS_CACHE_FIRST, &OutBuffer;);
switch (rc)
{
case FDS_SUCCESS:
printf("<MyRole::> resolves to (%0s)., OutBuffer);
break;
case FDSERR_ROLE_NOT_FOUND:
printf("The role name was not founa");
break;
case FDSERR_ROLE_NAME:
printf("The role name syntax is invaNd.);
break;
default:
printf("FdsResolveRoleNm completed with return code = (#4)r.c);
break;
}
}/lend if
else
{
/I else process errors
}
The output of this code when role <MyRole::> exists on node MYSERVER and the
loca | machineds cache does not have an entry f
The role name was not found.
<MyRole::> resolves to MYSERVER.
<MyRole::> resolves to MYSERVER.
If this code is run a second time, the output will be different because the local
ma c hi ne 6 supdatedwheneviersa role is discovered. The output for the
second run is:
<MyRole::> resolves to MYSERVER.
<MyRole::> resolves to MYSERVER.
<MyRole::> resolves to MYSERVER.
I f this code is run when MYSERVER is down an
an
entry for <MyRole::> set to MYSERVER, the output is:
<MyRole::> resolves to MYSERVER.
The role name was not found.
<MyRole::> resolves to MYSERVER.

FdsSetResetRole()

Purpose
Assume or relinquish a role name.

Syntax

Parameters

Remarks

#include <fds/names.h>

long FdsSetRetdeole(FDS_ROLE_NARI&eNameint Flag);

RoleNamed input
Points to a null-terminated string of the role name to be set. The role
name must contain double colons (::) and cannot begin with the
characters FDS. The role name must be delimited by the less-than and
greater-than characters (< and >). This parameter cannot be a logical
name.

Flagd input
Indicates whether the node is acting a role. One of the following
attributes must be chosen:
FDS_RESET ROLE
The node no longer has a role.
FDS_SET_ROLE
The node has assumed a role.

If the Flag parameter is set to FDS_SET_ROLE, this API indicates to the Name
Services component that the local node has assumed a role. As a result, strings
containing the role name specified by the RoleName parameter and passed to
IPC or File Services anywhere in the system will resolve to this node.

If the Flag parameter is set to FDS_RESET_ROLE, this API indicates to the
Name Services component that the local node is no longer acting the role
specified by RoleName

The Name Services component does not attempt to prevent role conflicts. The
application must ensure that two nodes in the same system are not acting the
same role concurrently.

When a role is assumed on a node, DDS creates a thread to periodically
announce, via a broadcast message, that the new role has been assumed. This
thread exists for the announcement period or until the role is relinquished. If your
application sets many roles in a short period of time, you may find it necessary to
increase the number of threads available to the operating system.

Error Conditions

Examples

FdsSetResetRole() returns the following values:
-170 FDSERR_EXISTS
-210 FDSERR_FLAG
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

#include <stdio.h>
#incluce <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc =0; // Return from API call
/I Initialize DDS. Could use FdslInit2() instead of FdsInit()
rc = Fdsinit();

/I 1f initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Assume the role <MyRole::> on this machine
1
rc = FdsSetResetRole("<MyRole::>", FDS_SET_ROLE);
I
/I Check that <MyRole::> is set to this machine
1
rc = FdsVerifyRole("<MyRole::>");
if (FDS_SUCCESS ==rc)

printf("Role <MyRole::> is lodal’);
}

else

printf("Role <MyRole::> is remota");

}
I
/I Relinquish the role <MyRole::> on this machine
I
rc = FdsSetResetRole("<MyRol&:FDS_RESET_ROLE);

Y end if

else

{

/I else process errors

}

The output of this code is:

Role <MYROLE::> is local

FdsVerifyRole()

Purpose

Verify that the local node is acting a role.
Syntax

#include <fds/names.h>

long FdsVerifyRole(FDS_ROLE_NRMeNamg
Parameters

RoleNamed input
Points to a null-terminated string of the role name to be verified. The role

name must contain double colons (::) and must be delimited by the less-
than and greater-than characters (< and >).

Remarks

FdsVerifyRole() allows an application to determine whether it is running on a node
that is acting a specified role. If this API returns O (zero), the role name is local. If it
returns the error -550 FDSERR_ROLE_NOT_FOUND, the role name is not local.

Error Condition s

FdsVerifyRole() returns the following values:
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc =0; /I Return from API call
/I Initialize DCBS. Could use FdsInit2() instead of Fdslnit()
rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{
I
/I Relinquish the role <MyRole::> on this machine
1
rc = FdsSetResetRole("<MyRole::>", FDS_RESET_ROLE);
I
/I Check that <MyRole::> is set to this machine
1
rc = FdsVerifyRole("<MyRole::>");
if (FDS_SUCCESS ==rc)

printf("Role <MyRole::> is lodal’);

else
printf("Role <MyRole::> is remadte");
}/lend if
else

I else proces errors

}
The output of this code is:
Role <MYROLE::> is remote

Chapter 8. Interprocess Communication

The Interprocess Communication (IPC) component provides a set of APIs to
facilitate the exchange of information between applications at local nodes and
remote nodes. The information is exchanged in the form of messages. The IPC
component maintains a message queue in which messages accumulate and
from which messages can be removed. Message queues can be accessed

through the IPC APIs.

The IPC APIs for receiving messages are:

FdsCloseQ() 0 Close a queue handle

FdsCreateQ() 0 Create and open a queue on the local node
FdsLockQ() 0 Lock a queue

FdsOpenQ() & Open a queue on the local or remote node
FdsPurgeMsg() & Purge the next message in the queue
FdsQueryQ() 8 Query information about a local queue

FdsReadQ() 6 Read the next message from a queue

A =A =2 =4 =4 4 -4 -4

FdsUnlockQ() & Unlock a locked queue

The IPC APIs for sending messages using point-to-point messaging are:

1 FdsCloseQ() 6 Close a queue handle

1 FdsOpenQ() 8 Open a queue on the local or remote node

1 FdsWriteQ() 6 Write a message to a queue

See AWriting Messages to Qu--pansniessagmng. a descr

The IPC API for sending messages using broadcast messaging is
FdsBroadcast Q(MesSagedWt ot Qungueso for a desc
broadcast messaging.

The messages contained in message queues are application messages. There
is no fixed format for messages being written to and read from queues, and the
IPC component does not interpret messages in any way.

An application must use the IPC component to create at least one queue for
receiving input messages. The name of the queue can be a DDS logical name,
and is required to be unique within the local node only. Once a queue is created,
other local and remote applications can write messages to that queue.
Applications do not need to detect whether another application is local or remote
before writing a message to a queue.

When a queue is created, the returned queue handle has read/write
permission, which can be used in all other IPC APIs that require a queue
handle.

Writing Messages to Queues
You can write messages either to a single node or to a set of nodes.

Writing Messages to a Single Node
Writing messages to a single node is called pointto-point messaging.

Point-to-point messaging is a reliable method for sending messages.
This method allows the application to write a message to a single
gueue on a single node within each FdsWriteQ() request.

The application must open the queue before writing a message to the
queue, and must identify the node ID where the queue is located. When a
queue is opened on a remote node, the IPC component locates the node,
establishes a session with it, and saves information about it and the
NetBIOS session or TCP/IP connection that was used to communicate
with it.

A unique queue handle is returned. All messages that are written to
the queue using this queue handle are sent to the remote node over
the connection that was established during the FdsOpenQ() request.

In addition, because the node ID uniquely identifies a single node, the
IPC component provides:

1 Confirmation that a message has been successfully delivered to
the destination node. (Retries are performed if necessary by the
IPC component before returning to the calling application.)

1 Confirmation that a message has been successfully delivered to the
destination node and has been written to the destination queue.
(Retries are performed if necessary by the IPC component before
returning to the calling application.)

9 Notification if communication with the node fails or if the queue is
deleted (closed by the owner).

1 Confirmation that the destination node is still acting
the role that was specified during the FdsOpenQ()
request.

If a single message needs to be sent to a queue that exists on multiple
nodes, point-to-point messaging requires that the application open the
gueue on each of the nodes and then call the IPC component to send
the message to each unique node. Alternatively, you can use the
broadcast messaging method described below.

Writing Messages to a Set of Nodes
Writing a single message to a set of nodes is called broadcast
messaging.The set of nodes to which the message is sent must be
defined as a broadcast domain.

This method does not require the application to open a queue before
writing a message; nor does it require the application to specify the
unique node ID of the node or nodes where the queue exists. The
application must only specify the broadcast domain nhame and the queue
name. See Chapter 6. Data Distribution for more information about how to
create the broadcast domain name.

When the message is sent, it is transmitted to all IPC nodes in the
system. At each IPC node that receives the message, the message is
discarded if the node ID is not defined as part of the specified broadcast
domain, or if the specified queue does not exist, is full, or is locked on
that node.

Note: Broadcast messaging does not provide confirmation of a
successful write; nor does it automatically retry to send the

message in the event of a failure.

FdsBroadcastQ()

Purpose

Broadcast a message to a specified queue name on a node that is a member of
a specified broadcast-domain name.

Syntax

#include <fds/ipc.h>

long FdsBroadcastQ(const ch@rdadcastQPtrunsigned inBuffSize const void BuffPtr);

Parameters

BroadcastQPt input
A pointer to a null-terminated string that contains a retail path
specification or a logical name that resolves to a retail path specification.
The retail path specification or resolved logical name must contain a
destination broadcast domain as well as a destination queue name. See
AFile Names and Queue Nameso for more inf

The retail path specification identifies the following names:

Destination broadcast -domain name
Identifies the list of node IDs that should handle the message if
a message is received.

The predefined broadcast-domain name FDSSxxxx where xxxx
is the system ID, can be used to send a message to every node
in the system. This broadcast domain name is available for use
with this API only , and cannot be used with any Data Distribution
APIs.

Destination queue name
Specifies the name or logical name of the queue at each node
in the broadcast domain specified by the input broadcast-
domain name to which the message should be written.

If a logical name is specified, each receiving node resolves the
logical name of the queue to determine which queue should
receive the message.

BuffSized input
The length, in bytes, of the message to be broadcast. The range for this
parameter is 1 to FDS_MAX_BCAST_SIZE. A BuffSizevalue of 0 (zero)
is not valid and results in the error -20 FDSERR_ADDRESS.

BuffPtrd input
A pointer to a buffer that contains the message to be broadcast and
written to the specified queue name on each node in the specified
broadcast-domain name.

The data pointed to by BuffPtrdoes not need to be null-terminated.
However, if it is, the value for BuffSizemust include 1 byte if the

Remarks

Error Conditions

null terminator is to be copied with the message data.

This API broadcasts a message on the network. Each node that receives the
message processes the message only if the node is defined as part of the
specified destination broadcast-domain name. If the node belongs to the specified
broadcast domain name definition, the node writes the message to the destination
gueue if the queue exists on that node and is not locked or full. If the node does
not belong to the specified broadcast domain name, or if the queue has not been
created, is locked, or full, the node does not write the message to the queue.

If the sending node is also part of the destination broadcast domain and has a
gueue with the name of the destination queue, a copy of the message is placed
in the local queue.

Refet to the IBM DistributedData Services/Controller Services Feature for
Wi ndows Us €far dae inBumattbre about defining broadcast domain
names.

Notes:

1. The IPC component does not validate that the specified broadcast-domain
name is defined or that any or all of the nodes are active that are defined
as part of the specified broadcast-domain name.

The number of active nodes in the system defined as part of the specified
broadcast-domain name does not affect how the broadcast function works.
The message, along with the destination broadcast-domain name and
destination queue name, is sent to all IPC nodes, but is discarded by nodes
that do not belong to the specified broadcast domain. This should be taken
into consideration when selecting this method for writing messages to one or
more queues.

2. There is no guaranteed delivery with this method: data can be lost or
duplicated, or messages can arrive out of order. No confirmation is provided to
report that the message arrived successfully at any or all of the destination
nodes defined in the specified broadcast domain name. In API will be
completed successfully.

3. Aunique node ID can be substituted for a broadcast-domain name and will not
be detected. The message will be broadcast to all IPC nodes, and is then
discarded at all nodes except theaddition, a broadcast to a non-existent queue
name cannot be detected by the sending node; the FdsBroadcastQ single
node with the specified node ID. If you need to send a message to only a
single node, point-to-point messaging is the most direct method. The
exception to this rule is when the unigue node ID is the same as the node ID
on which the caller is running; in this case, the error -120
FDSERR_DOMAIN_NAME is returned.

This API returns the following values:
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-120 FDSERR_DOMAIN_NAME
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-330 FDSERR_MESSAGE_SIZE
-410 FDSERR_OVERFLOW

-450 FDSERR_QUEUE_NAME
-500 FDSERR_REMOTE

Examples
#include <stdio.h>
#include <strig.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; /I For Storing Queue Handle
typedef struct
{

char MsgText[100];

int MsgLen;

int Msgld;
} MSG_DATA,;
MSG_DATA MsgData; /I Message to be broadcast
/I Initialize DDS could use FdsInit2()
rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
I
/I Create MyQueue
1
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
if (rc == FDS_SUCCESS)
{
1
/ Message text to ke broadcast
1
strcpy(MsgData.MsgText, "This is a broadcast message test");
MsgData.Msgld = 2;

)
/I Determine the message length that is to be broadcasted
I

MsgData.MsgLen = strlen(MsgData.MsgText);
I

// Broadcast the message to the following:

/I BroadcastDomain name = DomainX

/I Queue name = DomainXQueue

1

/I Assuming a default system ID of 0000, you could also specify
/I BroadcastDomai name = FDSS0000, which would broadcast
I/l the message to all nodes in the Distributed Data Services

Il system.

1l

rc = FdsBroadcastQ("DomairbomainXQueue”, MsgData.MsgLen,
&MsgData);
printf("FdsBroadcastQ completed with return code = (¥d).rc);
}
rc = FdsCloseQ(CreateQHandle);
}/ end if
else

{

FdsCloseQ()

Purpose

Syntax

Parameters

Remarks

/I else process errors

}

Close a queue handle.

#include<fds/ipc.h>

long FdsCloseQ(loi@Handle);

QHandled input
Specifies the queue handle to be closed. The queue handle can have
been returned in either the FdsCreateQ() or FdsOpenQ().

This API closes the queue. Any pending commands with the specified queue
handle are cancelled and returned with the error -420
FDSERR_QUEUE_CLOSED.

If the specified queue handle was the queue handle returned in the FdsCreateQ()
API, all outstanding messages are purged from the queue and the queue is
deleted. Any new requests with queue handles that were returned in the
FdsOpenQ() API for this queue receive an error indicating that the queue is
closed.

If the specified queue handle was one returned in the FdsOpenQ() API, the
queue contents are not affected and the queue remains available to the
application that created the queue as well as to other applications that have
opened the queue.

The specified queue handle is no longer available for use after this API
has completed successfully.

Error Conditi ons

Examples

FdsCloseQ() returns the following value:
-220 FDSERR_HANDLE

#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
long NotificationQHandle = 0; // No Notification Requeste
long OpenQHandle; /I Queue Handle from OpenQ

FdsCreateQ()

Purpose

Syntax

Parameters

long timeout = 60; // timeout FdsOpenQ Value
/I Initialize DDS could use FdslInit2()
rc = Fdslnit();
/I If initialization was successful
if (rc == FDS_SUCCESS)
{
1
/I Open queue on node id NODE_A
I
rc = FdsOpenQ("NODE_A::MyQueue",
NotificationQHandle,
timeout,
&OpenQHandle);
/' Work with remote queue
1
/I Call FdsCloseQ to close queue on node id NODE_A
I
rc = FdsCloseQ(OpenQHandle);
printf("FdsClose@Qompleted with return code = (%dl)", rc);
Y/ end if
else

I else process errors

}

Create and open a queue on the local node and assign a queue handle.

#include <fds/ipc.h>

long FdsCreateQ(const cha@KamePtrunsigned londMaxQSizelong
*QHandlePt;

QNamePtro input
A pointer to the name of the queue to be created on the local node. This
name is chosen by your application and can be a logical name. The queue
name or resolved logical name must be a null-terminated string of not
more than 20 characters, and must be unique on the local node. If another
queue with this name exists on the local node, an error is returned.

Queue names that begin with the prefix FDS or fds are reserved.

MaxQSize d input
The maximum number of bytes that can be written to the queue before the
queue is full and additional application messages to be written to the

queue are either discarded or blocked.

information.

Remarks

Error Conditions

Examples

QHandlePtrd output
A pointer to the location where the assigned queue handle is stored.
The queue handle can be used by your application to access the queue.
It can also be used in any IPC API that requires a queue handle as
input.

The creator of the queue is the queue owner.

If you call the FdsCloseQ() API with the returned queue handle, the
gueue is destroyed.

If a queue with the specified name does not already exist on the local node,
FdsCreateQ() creates and opens a queue on the local node, returning a
gueue handle that your application can use to access the queue. If a queue
with the specified name already exists on the node, the error -170
FDSERR_EXISTS is returned.

The queue can also be opened by other applications using the FdsOpenQ() API.

Upon successful completion, the returned queue handle can be used by all
threads in your application.

When you close a queue whose specified queue handle was returned in the
FdsCreateQ() API, the queue is destroyed. Any pending read requests will be
completed with the error -420 FDSERR_QUEUE_CLOSED. In addition, any
subsequent requests with a queue handle associated with this queue will result

intheerror-4 20 FDSERR_QUEUE_CLOSED. See AFdsCl oseC(

details.

FdsCreateQ() returns the following values:

-170 FDSERR_EXISTS

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-410 FDSERR_OVERFLOW

-450 FDSERR_QUEUE_NAME

-470 FDSERR_QUEUE_SIZE

-500 FDSERR_REMOTE

#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errnch>
long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; // For Storing Queue Handle
/I Initialize DDS could use FdsInit2()
rc = Fdslnit();
/I If initialization was successful
if (rc == FDS_SUCCESS
{
1

/I The following call to FdsCreateQ API creates a queue named MyQueue

FdsLockQ()

Purpose

Syntax

Parameters

Remarks

Error Conditions

Examples

/l and returns a handle in CreateQHandle parameter

I
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
printf("FdsCreateQ completed with return code = (%).rc);
/I Work with created queue
/I Close the Queue
rc = FdsCloseQ(CreateQHandle);

Y end if

else

/I else process errors

}

Lock the queue associated with the input QHandle. While the queue is locked,
no additional messages can be added.

#include <fds/ipc.h>

long FdsLockQ (lori@Handle);

QHandled input
Specifies the queue handle associated with the queue to be locked.
Only the handle returned in the FdsCreateQ() API can be used to lock
the queue. Queue handles returned in FdsOpenQ() requests for a
queue are not valid for this request.

FdsLockQ() locks the queue. No additional messages can be added to the queue
while it is locked. All messages that are received while the queue is locked are
discarded. At the time the queue is locked, all blocked writes (from FdsWriteQ())
are completed with the error -10 FDSERR_ACCESS and the contents of the
gueue remain unchanged. The messages already in the queue can be read, but
no additional messages are added to the queue.

If the queue is already locked at the time of this request, the queue remains
locked and this APl is completed without an error.

FdsLockQ() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE

#include <stdid>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size

long CreateQHandle = 0; /I For Storing Queue Handle
/I Initialize DDS could use FdsInit2()

rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
/I Create MyQueue
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
if (rc == FDS_SUCCESS)
{
1
/Il Call FdsLdQ to lock MyQueue
1
rc = FdsLockQ(CreateQHandle);
printf("FdsLockQ completed with return code = (%d).rc);
}
/I Close the Queue
rc = FdsCloseQ(CreateQHandle);
Y end if
else
{

Il else process errors

}

FdsOpenQ()
Purpose
Open a queue on the local or remote node and return a queue handle that can
be used to write to the queue.
Syntax
#include <fds/ipc.h>
long FdsOpenQ(const chaR&tPathSpecPtr longNotificationQHandlelongtimeout, long
*QHandlePt;
Parameters

RetPathSpecPtrd input
A pointer to a string that contains a retail path specification. The retail path
specification can be a logical name, but must be a null-terminated string.
The input retail path specification or resolved logical name must contain a
gueue name. |t can optionally contain a
Names and Queue Nameso for more informat.i
specification formats. Each piece of the retail path specification or

resolved logical name determines what action the IPC component will
take:

QName
The name of the queue to be opened. See FdsCreateQ() for
more information about queue names. A queue with the
specified queue name must have been created on the specified
node using the FdsCreateQ() API before it can be opened using
the FdsOpenQ() API.

RoleNameor node IDA RoleNamecan be specified to tell the IPC
component to open the queue on whatever node is acting the role
defined by the RoleName. The IPC component resolves the
RoleNameto the actual node ID.

A node IDcan be specified if the queue is to be opened on a
particular node, no matter what role that node currently has. The
node ID specifies the unique name of the node on which the
gueue should be opened.

Note: Neither RoleNamenor node IDare required if you are
opening a queue on the local node. However, if you are
opening a queue on a remote node, you must specify the
node IDor a RoleName of the remote node. If no node ID
or RoleNameis specified, the IPC component attempts to
open the queue on the local node only.

NotificationQHandIé input
The handle of a local queue that has been opened or created by your
application. The IPC component uses this handle to write a notification
to the queue if one of the following conditions occurs:
1 The queue being opened in this call is deleted (closed by the owner)
1 Communication fails with the remote node where the queue being
opened in this call is located.

If the queue associated with the specified NotificationQHandlés closed
or locked when a natification is generated, the natification is discarded.
The failure is returned as an error the next time your application
attempts to write to the queue.

Valid values for NotificationQHandlare:

0 (zero)
No notifications are written to the queue if one of the
above conditions occurs.

QHandle
the valid queue handle of a queue, reated or opened on the
local node by your application, to which notifications will be
written.

timeoutd input
The time, in seconds, that an application is blocked if the IPC component
is unable to open the queue on the first attempt, unless a non-recoverable
error is detected (for example, the adapter is closed). If the queue is on a
remote node that the IPC component has not communicated with before
this call, the open process might be a lengthy operation because it

requires establishing communication with the node. Upon completion of
the attempt to establish communication and open the queue. The IPC
component waits and retries again if the operation was not successful and
the specified time out has not already elapsed,. A time out will not occur
while the IPC component is attempting to establish communication and
opening the queue; a timeout occurs only when the IPC component is
determining whether it should wait and try again. Therefore, the specified
time out and the actual elapsed time before the IPC component returns
with the error -580 FDSERR_TIMEOUT could vary by as much as 2 to 3
minutes. Valid values are:

0 (zero)
The IPC component attempts to open the queue once and
return the results.

Greater than zero
The IPC component blocks the caller up to the specified time
or until it successfully opens the queue, whichever is less.

Less than zero
The IPC component blocks the caller until it successfully opens
the queue.

QHandlePtrd input/output
A pointer to the location where the assigned queue handle is stored.
The queue handle can be used by your application to access the
queue.

Remarks

FdsOpenQ() opens a queue on the local or a remote node. Upon successful
completion, this API returns a queue handle for your application to use to write
to the specified queue. The returned queue handle can be used by any thread
within your application.

The queue must be created (using FdsCreateQ()) before it can be opened.

If a RoleName is specified for the node, the IPC component locates the node ID of
the node that is acting that role. The IPC component saves the information about
the role used to locate the node to open the queue. Using the FdsWriteQ() API,
you can request that the IPC component confirm that the node is still acting the
role specified in the FdsOpenQ() request. If requested, the IPC component verifies
that the node is still acting that role. If not, the IPC component does not write the
message to the queue and returns an error or posts a naotification to the notification
gueue that was specified in the FdsOpenQ()
information.

If the specified queue name is a logical name, the IPC component resolves the
gueue name at the node where the queue is to be opened.

Error Conditions

FdsOpenQ() returns the following values:

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-370 FDSERR_NOTIFY_QUEUE

-410 FDSERR_OVERFLOW

-450 FDSERR_QUEUE_NAME

-460 FDSERR_QUEUE_NOT_FOUND
-500 FDSERR_REMOTE

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND
-580 FDSERR_TIMEOUT

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
long NotificationQHandle = 0; // No Notification Requested
long OpenQHandle; /l Queue Handle from OpenQ
long timeout = 60; /l timeout FdsOpenQ Value
/I Initialize DDS could use FdsInit2()
rc = Fdslnit();
/I If initialization was successful
if (rc == FDS_SUCCESS)
{
I
/I Call FdsOpenQ to open queue on node id NODE_A
1
rc = FdsOpenQ("NODE_A::MgQa",
NotificationQHandle,
timeout,
&OpenQHandle);
printf("FdsOpenQ completed with return code = (%), rc);
/I Work with remote queue
/I Close the Queue
rc = FdsCloseQ(OpenQHandle);
Y/ end if
else

{

I else process errors

}
FdsPurgeMsg()

Purpo se
Purge the next message in the queue.

Syntax
#include <fds/ipc.h>

long FdsPurgeMsg(lofgHandle);

Parameters

QHandled input
Specifies the queue handle associated with the queue from which a
message should be removed and discarded. Only the queue handle

Remarks

Error Conditions

Examples

returned in FdsCreateQ() can be used to purge a message from the
queue. Queue handles returned in FdsOpenQ() requests for a queue are
not valid for this request. See FdsCreateQ() and FdsOpenQ() for more
information about queue handles.

This API removes and discards the next message in the queue associated with
the specified queue handle.

FdsPurgeMsg() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE
-430 FDSERR_QUEUE_EMPTY

#include <stdidh>
#include <string.h>
#include <fdsfipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size

long QueueHandle = 0;

char ReadBuffer[100]; /l Message from Read Queue
unsigned int BufferLength = sizeof(ReadBuffer); // Length of Message
int MsgType;

long timeout = 60; /l timeout Value

/I Initialize DDS could use FdslInit2()

rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
rc = FdsCreaQ("MyQueue", MaxQSize, &QueueHandle);
if (rc == FDS_SUCCESS)
{
/I Write to MyQueue
rc = FdsWriteQ(QueueHandle,
BufferLength,
"Message to be purged",
FDS_WRITTEN,
timeout);
/I Set BufferLength to value smaller than the actual message size
BufferLengh = 10;
/I Attempt to read message on MyQueue
rc = FdsReadQ(QueueHandle,
&BufferLength,
ReadBuffer,
timeout,
&MsgType);
/I If the Read was unsuccessful
if (rc 1= FDS_SUCCESS)
{
printf("Read failed. Return code = (%dJ}, rc);

FdsQueryQ()

Purpose

Syntax

Parameters

1
I/ If error is that read buffer is too small, purge the message
1
if (FDSERR_BUFFER_SIZE == rc)
1
/I Call FdsPurgeMsg API to delete the message from MyQueue
1
rc = FdsPurgeMsg (QueueHandle);
printf("FdsPurgeMsg completed with return code = (%d).rc);
Y end if
Il Else process message
/I Close MyQueue
rc = FdsCloseQ(QueueHandle);
}/end if
Y/ end if
else

{

I else process errors

}

Query information about a local queue.

#include <fds/ipc.h>

long FdsQueryQ(lofgHandle unsigned int QMsgCountPtr
unsigned long ®MaxSizePtr
unsigned long ®BytesLeftPir
unsigned int QueryFlagPt);

QHandled input
A queue handle associated with the queue to be queried. Only the
handle returned in the FdsCreateQ() API can be used to query the
queue. Queue handles returned in FdsOpenQ() requests for a queue are
not valid for this request.

QMsgCountPtrd output
An input pointer to the location where the number of messages currently in
the queue is written.

QMaxSizePtrd output
An input pointer to the location where the maximum queue size is
written. The value returned is the number of bytes.

QBytesLeftPtd output
An input pointer to the location where the number of bytes that can be
added to the queue before the queue is full. This number is the
maximum queue size minus the number of bytes currently written in the
queue.

QueryFlagPtrd output

An input pointer to the location where the query status is written. The
query flag contains the following attributes:

Lock status
Indicates whether or not the queue is locked. See FdsLockQ()
and FdsUnlockQ() for more information.

Block status
Indicates whether or not the queue is blocked. If it is blocked,
at least one message has been blocked due to insufficient
space available in the queue. See FdsWriteQ() for more
information.

To determine whether a particular attribute is set, perform a bitwise AND
operation of the value pointed to by QueryFlagPtrwith the attribute you
are testing. If the result is non-zero, the attribute is set.

Valid values are:
FDS_QUEUE_LOCKED
The queue is locked.
FDS_QUEUE_BLOCKED
The queue is blocked.

Remarks

This API queries and returns information about the local queue associated with the
specified QHandle parameter.

Error Conditions

FdsQueryQ() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>
\

long rc; // Return from API Call

long MaxQSize = 500; /I Maximum queue size

long CreateQHandle = 0; /I Queue Handle from CreateQ
unsigned int NumMessages; /I Number of messaggin the queue
unsigned long BytesLeft; /I Number of bytes left in the queue
unsigned int QueryFlag; Il Query flag value

/I Initialize DDS could use FdsInit2()

rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{
/I Create MyQueue
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
}/ end if
if (FDS_SUCCESS == rc)
{

1
/I Call FdsQueryQ API to get information about MyQueue
/1

FdsReadQ()

Purpose

Syntax

Parameters

rc = FdsQueryQ(QueueHandle,

&NumMessages,
&MaxQSize,
&BytesL eft,
&QueryFlag);
Y/l end if
if (FDS_SUCCESS ==rc)

{
printf("Number of messages in queue =Y%n", NumMessages);
printf("Maximum queue size = (%l) bytég:', MaxQSize);
printf("Number of bytes left in queue = (%ln", BytesLeft);
if (QueryFlag & FDS_QUEUE_LOCKED)
printf(" ---=> Queue is locketh");
if (QueryFlag & FDS_QUEUE_BLOCKED)
printf(" ---=> Queue is blockedth");
Y/ end if
else
printf(" Query Queue failed. Return Code = (%').rc);

Read the next message from a queue.

#include <fds/ipc.h>

long FdsReadQ(lori@gHandle unsigned int BuffSizePtrvoid* BuffPtr, long
timeout, int *MsgTypePir

QHandled input
Specifies a queue handle associated with a queue from which a message
is to be read. Only the queue handle returned in the FdsCreateQ() API can
be used to read from the queue. Queue handles returned in FdsOpenQ()
requests for a queue are not valid for this request.

BuffSizePtrd input/output

Input When this API is called, this value must specify the length
of memory pointed to by BuffPtt

Output
When this API has completed successfully, the value pointed to
by BuffSizePtris replaced by the size of the message that was
copied to the input buffer pointed to by the BuffPtrparameter.

If the read fails with the error -40 FDSERR_BUFFER_SIZE, the
value pointed to by BuffSizePtris replaced with the size of the
next message in the queue.

If the read fails with any other error, the value pointed to

by BuffSizePtris not modified.

BuffPtrd input
Specifies a pointer to a buffer where the message read from the queue
is placed.

timeoutd input
Indicates whether and for how long your application is suspended to
wait for a message if there are no messages in the queue. Valid values
are:

0 (zero)
If no messages are in the queue, FdsReadQ() returns
immediately with the error -430 FDSERR_QUEUE_EMPTY.

Less than zero
If no messages are in the queue, FdsReadQ() suspends your
thread until a message is in the queue or until the queue is
closed (from another thread in your application).

Greater than zero
The maximum time in seconds that FdsReadQ() suspends
your thread before returning the error -580
FDSERR_TIMEOUT if no messages are written to the queue.

MsgTypePt® output Specifies an input pointer to an integer where the
MsgTypevalue of the message that was read is stored. The value of
MsgTypeidentifies whether the message was written to the queue by
an application or by a DDS component. Possible values are:

FDS_IPC_MSG
If the queue being read from was designated as a notification
gueue when another queue was opened, the IPC component
writes natifications to this queue if communication with the other
gueue fails. The format of the data copied to the memory pointed
to by BuffPtris defined by the FDS_IPC_MSG_STRUCT data
structure.

FDS_DIST_SYNC_NOTIFY_MSG
This value identifies a message used by the Data Distribution
component for file and directory synchronization notification. This
message is generated as the result of a previous call to the
FdsSetupSyncIDNotify() API. The format of the data copied to the
memory pointed to by BuffPtris defined by the FDS_SYNC_ID
data structure.

FDS_DIST_STATE_NOTIFY_MSG
This value identifies a message used by the Data Distribution
component for state change notifications. This message is
generated as the result of a previous call to the
FdsSetupDistMonitor() API. The format of the data copied to the
memory pointed to by BuffPtris defined by the
FDS _DIST_STATE data structure.

FDS_APPL_MSG
If the source of the message is an application other than the IPC
component, the MsgTypeparameter is set to FDS_APPL_MSG.

Remarks

Error Conditions

Examples

The format of the data copied to the memory pointed to by
BuffPtris defined by the application.

FdsReadQ() reads the next message from the queue associated with the
input queue handle, and copies the message into the buffer pointed to by the
BuffPtrparameter.

Upon successful completion, the parameter pointed to by BuffSizePtris
replaced with the actual number of bytes placed in the buffer.

If the size of the message in the queue exceeds the length of the input buffer
(specified by the value pointed to by the BuffSizePtrparameter), the error -40
FDSERR_BUFFER_SIZE is returned and the parameter pointed to by BuffSizePtr
is replaced with the actual size of the next message. You can call another
FdsReadQ() API with a larger buffer to read the message or you can purge the
message from the queue using the FdsPurgeMsg() API.

FdsReadQ() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-220 FDSERR_HANDLE
-420 FDSERR_QUEUE_CLOSED
-430 FDSERR_QUEUE_EMPTY
-580 FDSERR_TIMEOUT

#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call

unsigned long MaxQSize = 500; // Maximum Queue Size

long CreateQHandle = 0; /I Queue Handle from CreateQ
long timeout = 60; // timeout Value

char ReadBuffer[100]; /l Message from Read Queue

unsigned int BufferLen = sizeof(ReadBuffer); // Length of Message Read
int MsgType; Il Type of Message Read

/I Initialize DDS could use FdslInit2()

rc = Fdsinit();

/I If initialization was successful
if (rc == FDS_SUCCESS)
{
/I Create MyQueue
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
Y end if
/I If create MyQueue was successful
if (rc == FDS_SUCCESS)
{
Il
/I Write to MyQueue

FdsUnlockQ()

Purpose

Syntax

Parameters

Remarks

Error Conditions

i
rc = FdsWriteQ(CreateQHandle,
BufferLen,
"Read Message Data",
FDS_WRITTEN,
timeout);

1
/I Call FdsReadQ API to read message in "MyQueue"
I
rc = FdsReadQ(CreateQHandle,
&BufferLen,
ReadBuffer,
timeout,
&MsgType);
printf("FdsReadQ completedith return code = (%d)n", rc);
1
/I Process Message in Read Buffer
/I CloseQ
I
rc = FdsCloseQ(CreateQHandle);
Y/ end if
else

/I else process errors

}

Unlock a locked queue. When a queue is unlocked, applications can resume
writing messages to the queue.

#include <fds/ipc.h>

long FdsUnlockQ(lor@@Handle);

QHandled input
Specifies the queue handle associated with the queue to be unlocked.
Only the handle returned in the FdsCreateQ() API can be used to unlock
the queue. Queue handles returned in FdsOpenQ() requests for a queue
are not valid for this request.

This API unlocks a locked queue to allow applications to resume writing
messages to the queue.

If the queue is not locked at the time of this request, the queue remains
unlocked and the API completes without an error.

FdsUnlockQ() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size

long CreateQHandl = 0; /I For Storing Queue Handle
/I Initialize DDS could use FdsInit2()

rc = Fdslnit();

/I If initialization was successful
if (rc == FDS_SUCCESS)

{
1
/I Create MyQueue
I
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
if (rc == FDS_SUCCESS)
{
1
/l Lock MyQueue
1
rc = FdsLockQ(CreateQHandle);
}
I
/I Work with locked queue
I
if (rc == FDS_SUCCESS)
{
1
// Call UnlockQ API to unlock the locked queue
1
rc = FdsUnlockQ(CreateQHandle);
printf("FdsUnLockQ completed with return code = (%d).rc);
}
I
/I Close the Queue
I
rc = FdsCloseQ(CreateQHandle);
Y end if
else
{
/I else process errors
}

FdsWriteQ()

Purpose
Write a message to the queue associated with the input QHandle.

Syntax

#include <fds/ipc.h>

long FdsWriteQ(lon@Handle unsigned inBuffSize
const void BuffPtr, int WriteFlag
longtimeout);

Parameters

QHandled input
The handle of the queue associated with the queue to which the
message is to be added. The QHandle must be one that was returned to
your application in either FdsCreateQ() or FdsOpenQ().

BuffSized input
The length, in bytes, of the message to be written to the queue.

The data pointed to by BuffPtrdoes not need to be null-terminated. If it
is, the value for BuffSizemust include 1 byte if the null terminator is to
be copied with the message data. The maximum supported message
size is the smaller of the following sizes:

I 60,000 bytes (the maximum message size supported by the
IPC component)

1 The maximum queue size of the queue to be written to
(see FdsCreateQ() for more information)

A BuffSizevalue of 0 (zero) is not valid and results in the error -
20 FDSERR_ADDRESS.

BuffPtrd input
A pointer to the buffer that contains the message to be written to the
queue.

WriteFlago input
A flag that contains one or more of the following write attributes:

RoleConfirm
Whether the role should be confirmed. The default
is FDS_NO_CONFIRM_ROLE. Valid values are:

FDS_CONFIRM_ROLE
Set this flag if you specified a RoleNameinstead of a
node ID in the FdsOpenQ() request, and you want the
IPC component to confirm that the node on which the
queue is opened is still acting that role. If you request this
confirmation and the IPC component detects that the
node is not acting the specified role, the message is
discarded.

This flag can be used in combination with
the FDS_WRITTEN flag only.

FDS_NO_CONFIRM_ROLE
The IPC component will not confirm the role on
the destination node.

Note: If you specified a queue name only or if you
specified a node ID instead of a RoleNamein the

FdsOpenQ() request, this attribute is ignored.

WaitConfirm
The level of confirmation to be completed by the IPC
component. The calling thread is suspended until the specified
level of confirmation has been completed. The default is
FDS_REQUEST_COPIED. Valid values are:

FDS_WRITTEN
The IPC component returns without an error after
receiving
confirmation from the destination node that the message
has been successfully written to the queue.

When this level of confirmation is requested and there is
not enough room in the queue for the message, the queue
becomes blocked. While a queue is blocked, all other
messages written to the queue with this level of
confirmation requested are blocked behind this request.
All messages broadcast to this queue or written with any
other level of confirmation are discarded.

As space become available in the queue, blocked
messages are retrieved to be written in the same order
that the messages were received and blocked.

If the caller specified a timeout other than 0 and the

gueue is blocked, the callerbds thi
until space becomes available and the message has

been written successfully to the queue or until an error is

detected.

The IPC component waits for the confirmation until one
of the following conditions occurs, at which time an error
is returned:

1 The API has timed out (see the timeout parameter)

1 The destination queue is locked

1 The IPC component detected that it can no longer
communicate with the destination node

1 The RoleConfirm attribute in the WriteFlag parameter
was set to FDS_CONFIRM_ROLE and the destination
node is no longer acting the role specified in the
FdsOpenQ() API

If this flag is specified when writing to a remote
destination node, the minimum timeout value used is the
value specified for the configuration parameter
IPCtimeout . Any timeout value that is less than the value
specified for IPCtimeout (including 0) will be ignored and
the IPCtimeout value will be used.

A minimum timeout value is required to allow the

FDS_WRITTEN confirmation to be returned to the
sender. Your testing could determine that a longer
timeout value is needed for high-volume systems.

If your application cannot wait the timeout value
specified by IPCtimeout for a confirmation, it should
not use the FDS_WRITTEN value.

FDS_REQUEST_COPIED
The IPC component returns without an error after the
input request data has been validated and the request
has been copied.

Note: The IPC component does not wait to receive a
confirmation from the destination node confirming that
the message was delivered and written to the destination
queue. Therefore, this APl might be completed without
an error, but the message will be discarded if the IPC
component detects any of the following conditions:

1 The IPC component has lost communication with the

destination node

The destination queue is locked or blocked

There is not enough room in the queue for the

message

I The RoleConfirm attribute in the WriteFlag parameter
was set to FDS_CONFIRM_ROLE and the destination
node is no longer acting the role specified in the
FdsOpenQ() API

f
f

timeoutd input
Whether and for how long your application is suspended to wait for the
specified level of confirmation to be completed. If the requested
confirmation level was FDS_REQUEST_COPIED, this parameter does
not apply and is ignored. Valid values are:

0 (zero)
FdsWriteQ() attempts to complete the write request once. If the
WaitConfirmattribute in the WriteFlagparameter is set to
FDS_DELIVERED and the IPC component fails to deliver the
message, an error is returned and no retries are performed. If
the WaitConfirmattribute in the WriteFlagparameter is set to
FDS_WRITTEN and the IPC component fails to deliver the
message or receive confirmation that the message was
successfully written to the queue, an error is returned and no
retries are performed. The IPC component does not suspend the
callerés thread if there is not enou
message or the queue is already blocked.

Less than zero
FdsWriteQ() suspends the callerdés thi
confirmation requested by the WaitConfirmattribute in the
WriteFlagparameter is received or until an unrecoverable error
is detected (for example, communication with the destination

Remarks

Error Conditions

Examples

node has failed). If there is not enough room in the queue or if
the queue is already blocked,
until there is room available in the queue only if the WaitConfirm
attribute in the WriteFlag parameter value is FDS_WRITTEN.

Greater than zero
The time, in seconds, that the calling thread remains suspended
while waiting for the correct level of confirmation to be
completed. If the request could not be completed in the specified
period of time, an error is returned.

FdsWriteQ() writes a message to the queue associated with the input
QHandle parameter. The specified QHandle parameter must be one that was
returned in either FdsOpenQ() or FdsCreateQ().

FdsWriteQ() returns the following values:
-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-210 FDSERR_FLAG

-220 FDSERR_HANDLE

-325 FDSERR_MEMORY_CONSTRAINED
-330 FDSERR_MESSAGE_SIZE

-350 FDSERR_NODE_NOT_FOUND
-420 FDSERR_QUEUE_CLOSED

-440 FDSERR_QUEUE_FULL

-500 FDSERR_REMOTE

-530 FDSERR_ROLE_CHANGE

-580 FDSERR_TIMEOUT

#include <stdio.h>
#include <string.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call

long OpenQHandle = 0; /I Queue Handl€rom OpenQ

long NotifyQHandle = 0O; /I No notification requested

long timeout = 60; // timeout Value

char WriteBuffer[100]; I Message from Write Queue

unsigned int BufferLen = sizeof(WriteBuffer); // Length of Message Write
int MsgType; /] Type of Message Write

/I Initialize DDS could use FdslInit2()
rc = Fdsinit();

/I If initialization was successful

if (rc == FDS_SUCCESS)

{

rc = FdsOpenQ("NODE_A::MyQueue",

} Il end if

NotifyQHandle,
timeout,
&OpenQHandle);

if (rc == FDS_SUCCESS

t

he

ca

strcpy(WriteBuffer, "Write to Queue™);

1

/I Call FdsWriteQ API to
1

write a message to the queue

rc = FdsWriteQ(OpenQHandle,

BufferLen,
"WriteBuffer",
FDS_WRITTEN,
timeout);

printf("FdsWriteQ completed with return code = (%d, rc);

1

/I process message
1

1

I/l CloseQ
1

rc = FdsCloseQ(OpenQHandle);

1

I/l CloseQ
I

rc = FdsCloseQ(CreateQHandle);

Y end if
else

I else process errors

}

Appendix A. Data Types

This section contains descriptions of the data types defined by the DDS APIs.

Note: DDS makes use of several program constants, which are used by the data
types described in this section. These constants are defined in the C

| anguage

header files provided

for more information about the header files.

FDS NODE_NAME
Node ID.

typedef char FDS_NODE_NAME [FDS_MAX_NODE_NAME_LEN]

FDS_NODE_INFO

Node ID and communication status data structure.

typedef struct
{

FDS_NODE_NAMBodelD;

short

NodeStatus;

} FDS_®DE_INFO;

NodelD

Node ID

NodeStatus

Communications status with the acting primary distributor:
FDS_ACTIVE

The node is communicating with the acting primary
distributor.

wi t h

DDS.

FDS_INACTIVE
The node is not communicating with the acting primary
distributor.

FDS_NODE_STATE
Node ID and distribution state data structure.

typedef struct

{
FDS_NODE_NAME Name;
int State;

} FDS_NODE_STATE ;

Name Node ID
State Reserved.

FDS ROLE_NAME
Role name.

typedef char ~ FDS_ROLE_NAME [FDS_MAX_ROLE_NAME_LEN]

FDS_DOMAIN_NAME
Domain name.

typedef char FDS_DOMAIN_NAME [FDS_MAX_DOMAIN_NAME_LEN]

FDS _SYNC_ID
Data Distribution synchronization ID.

typedef struct
{
unsigned long ObjectHandle ;
long ObjectCreationTime ;
unsigned long SequenceNumber ;
long SequenceTimeStamp ;

} FDS+SYNC_ID:

FDS_DDS BLOCKED_INTERFACE;
Interfaces that DDS will be blocked from using.
typedef struct
{
char Address[FDS_MAX_TCPIP_ADDR_LEN+1];
} FDS_DDS_BLOCKED_INTERFACE;

FDS_CFG
Installation and configuration data structure.
typedef struct
{

short Adapter0Sessions;
short AdapterlSessions;
short Adapter2Sessions;
short Adapter3Sessions;
unsigned short AdptrNumNames;
unsigned short AdptrResetValue;
unsigned short DDActive;
unsigned short DistributionRole;
unsigned bort IPCTimeout;
unsigned short LocatePrimary;
unsigned long MaximumMemory;

unsigned short MaxRequestors;

FDS_NODE_NAME NodelD;

short NVRAMApplLine;

char ProductLevel[9];

unsigned short RemotelPC,;

char SystemID[5];

char WorkDirectory[FDS_MAXVORK_DIR_LENGTH];
char ControlledDrives[FDS_MAX_CONTROLLED_DRIVES_SIZE];
char FDSInstallDirectory[FDS_MAX_PATH_LENGTH];
unsigned short IPCTransport;

unsigned short IPCPortStart;

unsigned short IPCPortCount;

unsigned short IPCHeartbeatinterval;

unsigred short NetworkRequestinterval;

unsigned short NetworkRequestRetries;

FDS_DDS_BLOCKED_INTERFACE
DDSBlockedinterface[FDS_MAX_BLOCKED_INTERFACES];
unsigned short DistRenamedFile;
} FDS_CFG;

AdapterOSessions
Number of NetBIOS sessions for LAN adapter O.
AdapterlSessions

Number of NetBIOS sessions for LAN adapter 1.

Adapter2Sessions
Number of NetBIOS sessions for LAN adapter 2.
Adapter3Sessions
Number of NetBIOS sessions for LAN adapter 3.
AdptrNumNames
Number of NetBIOS names used on each adapter.
AdptrResetValue
Number of seconds between adapter resets.
DDActive
FDS_CONFIG_YES
Data Distribution is configured on the node.
FDS_CONFIG_NO
Data Distribution is not configured on the node.
DistributionRole
FDS_CONFIG_NONE
Data Distribution is not configured on the node.
FDS_CONFIG_PRIMARY_DIST
The node is the configured primary distributor.
FDS_CONFIG_BACKUP_DIST
The node is the configured backup distributor.
FDS_CONFIG_SUBORDINATE
The node is a subordinate.
IPCTimeout
IPC time out, in seconds.

LocatePrimary
FDS_CONFIG_YES

Data Distribution is configured on the node.

FDS_CONFIG_NO
Data Distribution is not configured on the node.

DistributionRole

FDS_CONFIG_NONE
Data Distribution is not configured on the node.

FDS_CONFIG_PRIMARY_DIST
The node is the configured primary distributor.

FDS CONFIG_BACKUP_DIST
The node is the configured backup distributor.

FDS CONFIG_SUBORDINATE
The node is a subordinate.

IPCTimeout
IPC time out, in seconds.

LocatePrimary

FDS_CONFIG_YES
A primary distributor is present in the system.

FDS_CONFIG_NO
A primary distributor is not present in the system.

MaximumMemory
Amount of shared memory used, in kilobytes.

MaxRequestors
Number of file clients supported by this node.

NodelD
Node ID.

NVRAMAppILine
Amount of NVRAM, in kilobytes, reserved for application use.

ProductLevel
Encoding of product version, release, and modification level.

RemotelPC

FDS_CONFIG_YES
Remote IPC is configured.

FDS_CONFIG_NO
Remote IPC is not configured.

SystemID
System ID.

WorkDirectory
Null-terminated (\0) path specification of work directory.
The path must include the final directory separator (V).

ControlledDrives
Null-terminated (\0) string of controlled drive letters.

FDSInstallDirectory
Null-terminated (\0) path specification of install directory.
The path must include the final directory separator (V).

IPCTransport

FDS_CONFIG_NETBIOS
IPC uses NetBIOS as the transport layer protocol.

FDS_CONFIG_TCPIP
IPC uses TCP/IP as the transport layer protocol.

IPCPortStat
First TCP/UDP port number used by IPC.

IPCPortCount
Number of TCP/UDP ports used by IPC.

IPCHeartbeatInterval
Time interval between IPC checks for a communication
connection, in seconds.

NetworkRequestinterval
Time interval between IPC queries of the LAN for the TCP/IP
port associated with a broadcast domain, in milliseconds.

NetworkRequestRetries
Maximum number of times IPC queries the LAN for the TCP/IP
port associated with a broadcast domain.

DDSBlockedInterface
Maximum number of interfaces that DDS can be blocked
from using.

DistRenamedFile
Whether distributed files (that are not part of a
distributed subdirectory) remain distributed if they are
renamed.

AutoSwitchOver

FDS_CONFIG_YES
Automatic Switch-Over is configured on this node.

FDS_CONFIG_NO
Automatic Switch-Over is not configured on this node.

AutoSwitchOverDelay
Time in minutes to wait before automatically activating the
acting backup as the primary distributor.

AutoSwitchOverForce

FDS_CONFIG_YES
Force automatically activating the acting backup as
the primary distributor.

FDS_CONFIG_NO
Do not force automatically activating the acting backup
as the primary distributor if it is not fully reconciled.

PrimarylPAdapter
The network adapter number specified using the
PrimarylPAddress keyword that will be added to during activation
of the primary distributor.

PrimarylPAddress
The IP address to be added to the node that is being activated
PrimarySubnetMask

PrimarylPAddress
The subnet mask used with the PrimarylPAddress.

PrimaryComputerName
The computer name (or NetBIOS name) to add to the node
being activated as the primary distributor.
FDS_IPC_MSG_STRUCT
IPC notification data structure.

typedef struct

{
long ClosedQHndI ;
long ReasonCode ;

}FDS_IPC_MSG_STRUCT;

ClosedHndl
IPC queue to which this notification refers.

ReasonCode
The reason the IPC queue was closed. Valid values are:

FDS _IPC_MSG_REASONCODE_COMM_FAILED
IPC remote communication has failed.

FDS_IPC_MSG_REASONCODE_Q CLOSED
The remote IPC queue has been closed by the
application.
FDS_DIST_STATE
Node ID and role-state data structure.

typedef struct
{
long Reserved[3]
long RoleState;

FDS_NODE_NAME NodelD;

} FDS_DIST_STATE

Reserved
Reserved.

RoleState
Distributor state.

FDS_ACTING_PRIMARY
Current role is acting primary.

FDS_TRANS TO_ACTING_PRIMARY
In transition to the acting primary role.

FDS_ACTING_BACKUP
Current role is acting backup.

FDS_TRANS_TO_ACTING_BACKUP
In transition to the acting backup role.

NodelD
Node ID.

FDS DATE_TIME
Date and time data structure.

typedef struct

unsigned short Year ;

unsigned char Month ;

unsigned char Day ;

unsigned char Hour ;

unsigned char Minute ;

unsigned char Second ;
} FDS_DATE_TIME

Appendix B. Error Codes

DDS return codes are 4-byte signed integers. A 0 (zero) return code indicates a
successful function call. A negative return code indicates an unsuccessful function
call.

This section contains a list of error codes in alphanumeric order.

-10 FDSERR_ACCESS

Explanation: A locking or sharing conflict occurred. Specific conditions for
this error include:

Note: Some of the descriptions indicate that this error can be caused by a

file being open. In such cases, the file may be opened by an

application or by the Data Distribution component. See the note

under AReconciliationo for informatio
il

t about
Di stributionds use of distributed fi

n
es.
1 The file is open or the file is read-only. These APIs are associated with
this error:
I AFdsDel et eFi l ()
I AFdsRenameFil e()
I AFdsSet Fil eAttri butes() o
1 Another process has locked the physical drive, the file, or some portion of the
file and the requested access would conflict with this lock, or another process
has access to the file and the requested lock would conflict with this access;
or, the file is considered read-only at the operating system level and
FDS_FILE_ACCESS_READ_WRITE was specified.
These APIs are associated with this error:
TAFdsCreat eKeyedF| l e() o
iAFdsOpenBinFile()o
FdsOpenKeyedFi le()o
FdsOpenSeqFile()o
1 Thefile is locked. These APIs are associated with this error:

o O

o 1 S 1 S ! Jun 1

TAFds Fi ndNextSeqRecor d() o
'|'ﬁFdsFIushB|nF| l e()o
iiFdsReadBinFile()oOo
iiFdsReadKeyedRecord()o
iiFdsReadSeqgqRecord()o
TAFdsRel easeKeyedRecord() o
iAFdsSeekBinFilePos()O0
iAFdsSetBinFileLocks()Eo
iTAFdsSetBinFileSize()Oo
TAFdsWriteBinFile()o

The file is locked or FDS_FILE_ACCESS_READ_WRITE was not specified

when the file was opened. These APIs are associated with this error:

iAFdsDel et eKeyedRecord() o
TAFdsWriteSegRecord() o
AFdsWriteKeyedRecord() élockels call ed and the
FDS_FILE_ACCESS_READ_WRITE was not specified when the file was

opened, or FDS_FILE_RECORD_UNLOCK_NO was specified and the

record is locked.

AFdsSetDistribution()o was called and the
AFdsDel et e Bc ast Dedaral b filg djstdbutadacsthec a |

broadcast domain is open.

AFdsWriteQ()RDSWRETEN awds lspedfied and the

queue is locked.

Awrite-onl 'y queue handle (returned by AFdsOpe
for an operation that requires a read-write queue handle (returned by

AFdsCreat eQ() o).

AFdsCreateDir()o was called and the direct
AFdsRemoveDir()o was called and the direct
by another process or the directory is not empty.

AFdsRestrictFil arfadtemptwassnade éolrestecda a n d

file that has already been restricted.

AFdsUnrestrictFile()o was called and an at
restrictions from a file that is not restricted.

AFdsQueryFil eSyst emlFildSps(einibrefarstsa cal | ed and
locked drive specification.

-20 FDSERR_ADDRESS

Explanation: Either a pointer that is not valid was specified, indicating that
the process does not have access to the full length of the buffer, or an input
buffer size of 0 (zero) was specified.

These APIs are associated with this error:

=4 =48 _8_8_9_9_9_2_-92_-92_-242-42._-42-4_-23

AFdsQueryConfig()o
FdsReadKeyedReco
FdsRel easeKeyed
FdsWriteKeyedRe
FdsWriteSegReco
FdsReadSegRecor
FdsReadBinFil e(
FdsWriteBinFile
Fds Get Fi |l eNames
Fds Get Nodes () 0
Fds GrBecaatst Domai n() 0
Fds Get DomainlList()o
Fds Get Domai nNodes ()
FdsBroadcast Q() o
FdsReadQ() o
FdsWriteQ()oOo

o

jun 1 e e 1 S) s } S) S) S ! S | S S ! S) S ! S 1 S 1]

-25 FDSERR_APPL_DOWN

Explanation: The DDS exit processing for this application has been run because
the operating system indicated that the application has ended. The application can
no longer make API calls to DDS. It must restart and reinitialize DDS before using
the DDS API. This error occurs if the
occurs after DDS exit processing.

-30 FDSERR_BLOCK_SIZE

Explanation: A block size that is not valid was specified to
AfFdsCreateKeyedFile()o.

-40 FDSERR_BUFFER_SIZE

Explanation: The input buffer was too large to be contained within an internal
buffer, or the input buffer was not large enough to contain all of the output data.
No output data is returned. The size of the output data is returned.

Specific conditions for this error include:

-50 FDSERR_CHAIN_THRESH

Explanation: A chain threshold that is not valid was specified to
AFdsCreateKeyedFile()o.

-60 FDSERR_CONFIG

Explanation: The component required to support the API that returned
this error is not installed or is not configured. These APIs are associated
with this error:

AiFdsActivat eAsPrimary()
FdsAddDomai nNode () 0
FdsCreateBcast Domai n()
FdsaCtreeSyncl D() o
FdsDeactivatePrimary()
FdsDel et eBcastDomai n()
FdsDel et eDomai nNode () 0
Fds Get DomainList ()0
Fds Get Domai nNodes () 0
FdsQueryBackupState()
FdsQueryDistribution(
FdsSetDistribution()o
FdsSetupDistMonitor ()o
FdsSetupSyncl DNoti fy()

o o

=4 =4 -8 -4 -8 8 -8 _5_42_9_42._-2._2_22
o O

jun e 1 S) S 1 S } S e 1 S e 1 S) s 1 S } S 1§

0

applic

-70 FDSERR_CORRUPT

Explanation : Damaged data was detected or created. Specific conditions
for this error include:

1 AFdsOpenSeqFile()o was called and the file
a sequential file.

1T "FdsReadSeqRecord() o waedicnattheed and the ne
correct format for a sequential record.

1T AFdsWriteSeqRecord()o was called and a par
disk.

T AFdsOpenKeyedFile()o0 was called and the fi
for a keyed file.

I Damaged data was detected in the file.
IARFdsDel et eKeyedRecord() o
iIAFds ReadKeyedRecord() o
iIAFds Rel easeKeyedRecord() o
ITAFdsWriteKeyedRecord() o

T AFdsQueryDistribution()o was called and da
detected in the distribution directory. Recovery from this error requires
that a new distribution directory be created. Follow these steps if the
damaged distribution directory is on the acting backup distributor or a
subordinate node.
DDS should be started on the acting primary distributor:

1. Stop DDS if it is running on the node on which the error exists.

2. Erase all of the distribution directory files from the node where the
error exists.

3. Start DDS on the node where the error exists. The DDS reconciler
will copy all of the distributed files from the acting primary
distributor and rebuild the distribution directory.

If this error occurs on the acting primary distributor, the acting primary
distributor must be deactivated and stopped. Next, the acting backup
distributor must be activated as the acting primary distributor. The steps
listed above can then be followed to recover the damaged distribution
directory.

-75 FDSERR_DATE_TIME

Explanation: A date or time that is not valid was specified to
AFdsSet Fil eAttributes()o.

-80 FDSERR_DIR_INDICATOR

Explanation: A directory indicator that is not valid was specified to
AFdsSetDistribution()o.

-90 FDSERR_DISK

Explanation: An error occurred while writing the distribution information
manager to disk. These APIs are associated with this error:

T AFdsDel eteBcastDomain()o
1T fAFdsDel eteDomai nNode() o
T AFdQuer yFil eSystemlnfo()o
1T AFdsSetDistribution()o

-100 FDSERR_DISK_FULL

Explanation: The disk is full. These APIs are associated with this error:

T AFdsWriteSegRecord()o
T AFdsCreateKeyedFile()Oo
T AFdsWriteBinFile()o

T AFdsSetBinFileSize()o

-110 FDSERR_DIST_FREQ

Explanation: A distribution frequency that is not valid was specified to
AFdsSetDistribution()o.

-120 FDSERR_DOMAIN_NAME

Explanation: A domain name that is not valid was specified. These APIs
are associated with this error:
FdsAddDomai nNode () o
FsdBr oadcast Q() o
FdsCreateBcast Domai n
FdsDel et eBcast Domai n
dsDel et eDomai nNode () 0
Fds Get Domai nNodes () 0
FdsSetDistribution()o

1 S} Sien ! S 1]

= =4 -8 & -8 —a -9
M

ot I

-130 FDSERR_DOMAIN_NOT_FOUND

Explanation: The domain does not exist. These APIs are associated with
this error:
1T AFdsAdcdDaNode () 0
T AFdsDel eteBcastDomain()o
1 The handle is not a valid queue handle. These APIs are associated
with this error:
iAFdsCl oseQ() 0

iARFdsLockQ() o
-AiFdsPurgeMsg() o
FdsQueryQ()o
FdsReadQ() o
FdsUnl ockQ() o

i
.
:
iAFdsWriteQ()o

jun 1 S : S S 1]

I The handle is not a valid, binary-file handle. These APIs are associated

with this error:
iIARFdsCl oseBi nFi l
I

=13

e (
e (
iz

I) O
TAFdsFl ushBi nFi) O
ITAFdsSet BinFiles$S e() o
IAFdsQueryBinFileSize()Oo
ITIAFdsReadBinFile()o
iIAFdsSeekBinFil ePos ()0
iIAFdsSetBinFileLocks() o
TAFdsWriteBinFile()o

-140 FDSERR_DOMAIN_TYPE

Explanation: A domain type that is not valid was specified to
AFdsSetDistribution()o.

-150 FDSERR_DOWN

Explanation: DDS was not started, is shutting down, or has shut down. If
your application had already successfully completed either an Fdsinit() or
FdsInit2() call, the application must be shut down and restarted in order to
successfully reinitialize.

-160 FDSERR_EOF

Explanation: The end of the file has been reached. Specific conditions for
this error include:
9 There are no more valid records in the file. These APIs are associated
with this error:
iAFdsFi ndNext SeqRec
iAFds ReadSeqRecor d(
1T AFdsReadBinFile()o was called and the val
NBytesPtr is greater than the number of bytes read.

ord()o
) O

-170 FDSERR_EXISTS

Explanation: An object exists. Specific conditions for this error include:

1 AFdsActivateAsPrimary()o was called and an

currently the acting primary distributor.

1
T AFdsCreat eKeyedFFDSeHLE &EXI&@TaRAILc al | ed;
as specified and the file exists.

AiFdsRenameFile()o was called and the targe

1 AFdsSetDistribution()o was called and chan

broadcast domain name for a distributed file or subdirectory is not
allowed.
1T AFdsCreateBcastDomain()o6 was called and a
domain already exists, a node ID was specified more than once, or this
node ID was assigned to more domains than are currently supported by
DDS.
1T AFdsAddDomai nNode()o0 was called and the no
a member of the domain.
T AFdsCreatelLogicNm()o6 was called and the | o
already exists.
1T A"FdsSet ResetRole()o0o was called and the rol
active on the node.
AfiFdsCreateQ()o0 was called and the queue al
AFdslnit()o or AFdslInit2()o was called and
resource that was needed could not be obtained. See the Event Viewer
for detail

=a =

-180 FDSERR_FILE_FULL

Explanation: The keyed file is full. No additional records can be added to

the file. Space will become available as existing records are deleted. To

increase the capacity of the file, it must be rebuilt specifying a larger file

size (that is, a larger number of blocks, a larger block size, or both). This

error is associated with AFdsWriteKeyedRecor

-190 FDSERR_FILE_NAME

Explanation: The file or path name is not valid. These APIs are associated
with this error:
AFdsCbeaf o
FdsCreat eKey
FdsExistFile
Fds Get Fil eAt
Fds Get Fil eNa
FdsOpenBi nkFi
FdsOpenSeqkFi
FdsOpenKeyed
FdsQueryFile
FdsQuer yDi st
FdsRemoveDir
FdsRenamekFil
FdsRestadictFi
FdsSet Fil eAtt
FdsUnrestrictFi
FdsSetDistributi
FdsSetDistribution(
i The drive specified by the path is not valid.
i The file or path name refers to a file or subdirectory that is not on a
controlled drive and therefore cannot be distributed.

A =AAAA-AAAA88_8_4_4_9_9=2
o1 B} Sl 1 Sien) S t S S } S ! S t S } S} Sin t S | S Jin | S | S
_U"\O)

0 was called and:

-200 FDSERR_FILE_NOT_FOUND

Explanation: The file, path, or directory does not exist. If you are using the

Name Services component, verify that the resolved name is correct.

Specific conditions for this error include:

1 The file or path does not exist on disk. These APIs are associated with
this error:

iiFdsDel eteFile()o
TAFdsExistFile()o
iAFdsGet Fil eAttributes()Oo
iAFds Get Fil eNames () 0
iAFdsOpenBinFile()o
iAFdsOpenKeyedFile()o
iAFdsSet Fil eAttributes()©o

1T AFdsReenFa |l e() 0 was called and the source fi
path, or the target path does not exist on disk.

I The path does not exist on disk. These APIs are associated with this

error:
TAFdsCreateKeyedFi
iAFdsOpenSeqFile()o
T AFdsSet Di str i butndoeithef thedflemras cal | ed,

directory does not exist on the disk, or the root directory has been

specified.

T AFdsQueryDistribution()o6 was called and th
was not found in the distribution directory. It is possible that the file or

directory is not distributed or that it is distributed but only as a result of

being in a distributed directory.

T AFdsIinit()o or AFdslnit2()o was called and
resource that was needed could not be obtained. See the Event Viewer
for details.

i Files are contained in the directory; the directory is not empty. These
APIs are associated with this error:
iAFdsCreateDir()o
iAFds RemoveDir()o

-210 FDSERR_FLAG

Explanation: A flag that is not valid was specified. These APIs are
associated with this error:

T AFdsActivateAsPrimary() o
T AFdsCl oseKeyedFile()o

T AFdsCreateKeyedFile()Oo

T AFdslnit2()o

1T AFdsOpenBinFile()o

T AFdsOpenKeyedFile()o

1 AFdsOpenSeqFile()o

1 AFdsReadKeyedRecord() o

T AFdsSetBinFilelLocks()o®o

1T AFdsSetFileAttributes()o
1T AFdsSet Reset Role()O0

T AFdsWriteKeyedRecord()o
T AFdsWriteQ()o

-220 FDSERR_HANDLE

Explanation: A handle that is not valid was specified. Specific conditions
for this error include:
1 The handle is not a valid, sequential-file handle. These APIs are
assomated with this error:
FdsCl oseSeqFil
FdsFindNext Seq
#sReadSeqgRecor
FdsReturnSeqkFi
FdsSeekSeqFile
FdsWriteSeqgReco
1 The handle is not a valid, keyed-file han
with this error:

e (
Re
d(
| e
Po
r

1 R} e | St Jen | R 1]

=3
©

iiFdsCl oseKeyedFile()Oo
iiFdsDel et eKeyedRecord() o
iTAFdsReadKey®dRecor d()
iAFdsRel easeKeyedRecord() o
iIAFdsWriteKeyedRecord() o

T AFdsCreateSynclD()o0 was called and the han

valid sequential- or keyed-file handle.

1 The handle is not a valid queue handle. These APIs are associated with
this error:
TAFds Cl

St St 3t 3t 3t 30 3N
T
o
n
Q
c

1 The handle is not a valid, binary-file handle. These APIs are associated
Wlth this error:

FdsCl oseBi nFi
FdsFl ushBinFi
FdsSet BinFil e
Fdes&®r yBi nFil e
FdsReadBi nFi l
FdsSeekBi nFil
FdsSet Bi nFi e

i

|
I
Si
Si
i e

i e

| L
FdsWriteBinFil

1 B } S } S } S | B b } B 14

-222 FDSERR_HANDLE_FORCED_CLOSED

Explanation: A handle to a file that has been restricted has been
specified. When file access to a file has been restricted using
FdsRestrictFile(), file handles to that file cannot be specified. To resolve
this error:

1. Close the file handle.

2. Remove access restrictions to the file using FdsUnrestrictFile().

3. Open a new file handle to the file.

These APIs are associated with this error:
T AFdsCloseBinFile()o
T AFdsCl oseKeyedFile()o

o

FdsCl oseSeqFil e()
FdsDel eteKeyedRecord() o
FdsFlushBinFile()
FdsReadBinFile()o
FdsReadKeyedRecord() o
FdsReadSegRecord()o
FdsRel easeKeyedRecord()o
FdsRestrictFile()o
FdsRethirlnSRags () 0

o

FdsSeekBinFilePos()O0
FdsSeekSeqgFil ePos () o0
FdsSetBinFilelLocks()oOo

FdsWriteBinFile()Oo
FdsWriteKeyedRecord()o
FdsWriteSeqRecord() o

ERE BT B R B R B B
e 1 S 1 s 1 s 1 e 1 e S | e 1 e | e 1 s 1 S | e | S 1}

-230 FDSERR_INIT

Explanation: Initialization has not occurred or has failed. Be sure that you
have initiated the FdslInit() or FdslInit2() APl before using any other APIs.

-240 FDSERR_INTERNAL

Explanation: An internal error occurred. Contact your IBM representative.

-250 FDSERR_INTERRUPT

Explanation: An API call was interrupted and was not completed.

-260 FDSERR_I0O

Explanation: An error occurred while accessing a physical I/0O device.
These APIs are associated with this error:

=

AiFdsCl oseKeyedFile()o6 (returned only if
FDS_FILE_RESET_YES is specified)

T AFdsCreateDir()o

1T AFdsCreateKeyedFile()o

1T AFdsDel eteFile()o

T AFdsDel eteKeyedRecord() oo
1 AFdsExistFile()o

1T AFdsFindNext SeqRecord() o
1T AFdsFlushBinFile()oOo

T AFdsGetFileAttributes()Eo
T AFdsGet Fil eNames() o0

1T AFdsOpenBinFile()o

FdsOpenKeyed
FdsOpenSeqgkFi
FdsQueryBinF
FdsQueryFile
§sReadBi nFil
FdsReadKeyed
FdsReadSegRe
FdsRemoveDir
FdsRenameFil
FdsRestrictF
FdsSet BinFil
FdsSet Fil eAt
FdsUnrestrict
FdsWriteBinFil
FdsWriteKeyedR
FdsWriteSe(qReco

|
(
e
s
) @
c
r
0
) @
e
i
i
i
e
e

A A28
jum 2 e S 1 e S S S S S} e S | S} e | S 1 S | S 1

-270 FDSERR_KEY

Explanation: The key is not valid. Null keys are not allowed. These APIs
are associated with this error:

T AFdsDel eteKeyedRecord()o
T AFdsReadKeyedRecord()o

T AFdsRel easeKeyedRecord() o
T AFdsWriteKeyedRecord()o

-280 FDSERR_KEY_NOT_FOUND

Explanation: The key does not exist in the file. These APIs are associated
with this error:

T AFdsDel eteKeyedRecord()o
T AFdsReadKeyedRecord()o
T AFdsRel easeKeyedRecord() o

-290 FDSERR_KEY_SIZE

Explanation: The key size is not valid. Specific conditions for this error

include:
T AFdsCreateKeyedFile()o was called and the
range.

1 The key size does not match the size specified when the file was
created These APIs are associated with this error:

FdsDel eteKeyedRecord() o

FdsReadKeyedRecord()o

FdsRel easeKeyedRecord

FdsWriteKeyedRecord()

) O

jun 1 e ! e ! Jen 1

(
(0]

-300 FDSERR_LOGICAL_NAME

Explanation: The logical name or input string is not valid. One of the
following conditions could have caused the error:

1 The string is too long.

1 The string is not null terminated.

1 The string contains a delimiter mismatch.

Specific conditions for this error include:

1 The input string is not valid. The string contains more than two colons
at the end of a role name or node ID. These APIs are associated with
this error:
iiFds BoaosatdQ() o
ITAFdsCreat i

' AFdsCreat

FdsCreat

FdsDel et

FdsExi st Fi

Fds Get Fi e

Fds Get Fi e

FdsOpenBin

FdsOpenKey

)
q
i

o
File()o

"TMO X0
Q_v
o

OTMzZ2>——"—m —

es()o

— — M ®® ®D® D D
O~ D <
-|-|—3 ~~ DO Mm—
- ®® O = =
—_——n — o~
O©~"T
~ o~ cCc
~
o

FdsOpenQ(
FdsOpenSe
Fds QueruwtDhii

~—
o

temlnfo()o

SN NN NN NN NN N
N
(@

N e s i ¢}
O ——~po~—0Ww 8—’,\

—

o ~zo
Mc o—3
.Hjo»/\

o —
mmv

-~ O
~—

S
sSet Fil
f

~
o o

I The logical name is not valid. One of the following conditions could
have caused the error:
T The string contains double colons.
I The string begins with the characters FDS.
I The string does not match the form <name> where the less-than and
greater-than characters (< and >) are required delimiters.
These APIs are associated with this error:

i AFdsCreatelLogi cNm()o
i AFdsDel etelLogicNm() o
| AFdsChangelLogi cNm() o

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

Explanation: The logical name is not defined. These APIs are associated
with this error:

T AiFdsCreateDir()o
T AFdsCreatelReyedFile()

FdsCreateQ() o
FdsDeleteFile()o
FdsExistFile()o
FdsGet Fil eAttributes()Oo
FdsGet Fil eNames () o

FdsOpenBinFile()o
FdsOpenKeyedFile()o
FdsOpenQ() o
FdsOpenSeqFile()o
FdsQueryDistribution()o
FdsQueryFil eSystemlnfo()o
FdsRemoveDir()o
FdsRenameFil e()o
FdsResol velLogi cNm(
FdsRestrictFile()o
FdsSetDistribution()
FdsSetFil eAttributes
OFdsUnrestrictFile()o
FdsRenameFil e()
FdsOpenSeqFile()
FdsOpenKeyedFil e
FdsCreat eKeyedFi
FdsOpenQ() o
FdsBroadcast Q() o
FdsCr e
FdsSet
FdsQuer yDi s

I

a

s

e

) 0
) o

(o]

—~ O

on() o
FdsDe
FdsCh
Fds Re
FdsOp

A=A -9-9=9=-9=-9:=-9:=-9:=-9=-9=-S9=-9:=-9:=2
o e 1 S) St S ! S) S) S | S | S ! S | S 1] :,RO jun 1 S ! S ! S } S s ! S | S | S | S } S S | S 1 2 | S | S | S 1

-320 FDSERR_MEMORY

Explanation: DDS or the operating system is out of memory. To increase
the available memory for DDS, use the MaximumMemory configuration
keyword and restart DDS. To increase the available memory for the
operating system, refer to the operating system documentation.

-325 FDSERR_MEMORY_CONSTRAINED

Explanation: DDS is in a low-memory condition on the target node of this

operation. Use the MaximumMemory configuration keyword to allocate

more memory and restart DDS on the target node. For example, if your

application issued AFdsWriteQ()o to a queue
and received this error code, the low-memory problem exists on the remote

node.

-330 FDSERR_MESSAGE_SIZE

Explanation: A message size that was not valid was specified to
FdsWriteQ() or FdsBroadcastQ().

-340 FDSERR_NODE_NAME

Explanation: A node ID was specified that is not valid. These APIs are
associated with this error:

FdsAddDomai nNode () o
FdsCreateBcast Domain()o
FdsCreateDir()o
FdsCreateKeyedFile()o
FdsDel eteDomai nNode () 0
FdsDeleteFile()o
FdsExistFile()o
FdsGet Fil eAttributes()o
FdsOpenBinFile()o
FdsOpenKeyedFile()o
FdsOpenQ() o
FdsOpenSeqFile()o

Fds QrielrgSystemlnfo()o
FdsRemoveDir()o
FdsRenameFile()o
FdsRestrictFile()o
FdsSetFileAttributes()oOo
FdsUnrestrictFile()o

jum 1 B 1 S 1 S | S | B | S | S | S | Sin | Sin 1]
nu n n non
® ® ® @ D

=13

=4 =88 -_8_-0_0_9_9_92_-9_-29._-9_-529_-24_-9_-4a_-29._-2

Ot 3 St 3Ot Ot 3

-350 FDSERR_NODE_NOT_FOUND

Explanation: Communication with a node could not be established or was lost, or the node
does not exist. The list below describes the specific condition for this error for each API.

T Communication with the node could not be established. The node might
not exist, might be malfunctioning, or might not be configured as a file
server. These APlIs are associated with this error:
iARFdsCreateDir ()0
A CreateKey

Del et e

Exi st F

Get Fi |l

Get Fi l

OpenBi

OpenKe

OpenQ(

OpenSeqkFi

Quer yBinF

Qu e rsytFeinilen

RemoveDir

RenameFi |

RestricttF

Set BinFil

Set Fil eAt

Unrestric

()o

o 1 e | S} St | i | B | B t S 1 i | b | B S 1 S | B } S S | Jin
TMTTMTMTTTTMTTTTMTMTTTTTT
0000000000000 000Q0
unmonnnnunununonnnuonuonuonunon

I Communication with the node has been lost. The file must be closed.
These APIs are associated with this error:
TIAFdsCl oseBinFile()o

iIAFdsCl oseKeyedFi | eFD$ CLOSE &¥PE FllUSHwas n |l y i f
specified.)

iIRFdsCreateSyncl D() 0
iAFdsCreateSyncl D() 0
iAFdsDel eteKeyedRecord() o
T AFdsFi ndNext SeqRecord() o
T AFdsFl ushBinFile()o
TAFdsQueryBinFileSize()oOo
TAFdsReadBinFile()o
TAFdsReadKeyedRecord() o

T AFdsReadSeqgRecord() o
iAFds Rel easeKeyedRecord()o
iAFdsReturnSeqFil ePos ()0
iTAFdsSeekBinFil ePos ()0
TAFdsSeekSeqFil ePos () 0
TAFdsSet BinFileLocks() o0
TAFdsSetBinFileSize()oOo
TAFdsWriteBinFile()o
TAFds Wr idReeored () O
TAFdsWriteSeqRecord()o

-360 FDSERR_NODE_TYPE

Explanation: The specified operation is not allowed on this node. Specific

conditions for this error include:

9 This operation is valid only on the acting primary distributor. These APIs are

assouated with this error:

AFds AddDomai nNode () o

FdsCreateBcast Domai n(

FdsDeactivatePrimary(
n (
e ()

o o o

FdsDel eteBcast Domai
FdsDel eteDomai nNo
FdsGet Domai nLi st
Fds Get Domai nNode
FdsQueryBackupsSt
FdsQueryDistribu
FdestSDi stri bution() ¢
T AFdsActivateAsPrimary ()0 was called and th

valid only on the configured backup distributor or configured primary

distributor when neither is the acting primary distributor.
T AFdsSetupDistMonitor () odionisas called and thi

valid only on the acting primary distributor or acting backup distributor.
1 An attempt was made to obtain write access to the image copy of a

distributed file (returned only if FDS_FILE_ACCESS READ_ WRITE was

specified). These APIs are associated with this error:

TAFdsCreat eKeyedF| l e() o
TAFdsOpenBi nFi l) O
e()o
0

T
i
i
T
:
i (
T S
T a
I t
|

ot Ot Ot Dt Ot Tt Ot Ot Ot

e (
'|'ansOpenKeyedF|I
iAFdsOpenSeqFil e()
1 An attempt was made to update the image copy of a distributed file. These
APIs are associated with this error:
Del eteFile()o
Del eteKdyg¢adReco
RemoveDir ()o
RenameFil e()
Set BinFil eSi
WriteBinFile

) ®

MMM
000000
nununuonuonon

o 1 Bt B 1 B t B 1 B 1]

0
ze(
()o

FdsWriteKeyedRec

or) O
FdsWriteSeqRecor d(

1 S 14

d(
) o

-370 FDSERR_NOTIFY_QUEUE

Explanation: A natification queue handle that is not valid was specified to

i Fds Op e Po§sble groblems are:

1 The queue with which the queue handle is associated has been closed.

T The specified queue handle has not been in
1

-375 FDSERR_NOT_DISTRIBUTED

Explanation: The file or directory is not distributed. This error is associated
with AFdsCreateSynclD()06 and fiFdsSetDistribu

-380 FDSERR_NOT_RECONCILED

Explanation: The acting backup distributor is not fully reconciled. This error
is associated with AFdsActivateAsPrimary() oo
iFdsDeactivatePrimary () o.

-390 FDSERR_NUM_BLOCKS

Explanation: A number of blocks that is not valid was specified to
AfFdsCreateKeyedFile()o.

-400 FDSERR_OS

Explanation: An unexpected, operating-system condition occurred. See the
event logs for details.

-410 FDSERR_OVERFLOW

Explanation: An internal buffer has reached its capacity. Specific conditions
for this error include:
1 The logical-name resolution was too complex or the system is out of file
handles. One of the following conditions could have caused the error:
I The input string resolves to a recursive, logical-name definition.
I The input string takes more than 500 logical-name resolutions to
completely resolve.
T The output string was longer than 2 times the maximum path length
allowed by the operating system.

These APIs are associated with this error:
AFdsBroadcast Q() o

3t

T

|ﬁFdsCreateD|r()o
iAFdsCreateKeyedFile()o
iAFdsDel eteFil e() o0
TAFdsExi stFile()o
iTAFdsGet Fil eAttributes()©o
TAFds Get Fil eNames () 0
iAiFdsOpenBinFile()oOo

iiFdsOpenKeyedFile()Oo
TAFdsOpenSeqFil e()o
iFFdsQueryDistribution()©o
TAFdsQueryFileSystemlnfo()o
TAFds RemoveDir()o
iAFdsRenameFil e() o0
TAFdsRestrictFile()o
iTAFdsSetDistribution()o
iiFdsSet Fil eAttributes()Oo0
iiFdsUnrestrictFile()oOo

T AFdsResolvelLogicNm()o wwmme call ed and the |
resolution was too complex. One of the following conditions could have
caused the error:

I The input string resolves to a recursive, logical-name definition.

I The input string takes more than 500 logical name resolutions to
completely resolve.

I The output string was longer than 2 times the maximum path length
allowed by the operating system.

The partially resolved name is returned.

1 The logical name resolution was too complex or the system is out of
gueue handles. These APIs are associated with this error:
iTAFdsCreateQ() o
TAFdsOpenQ() o

-420 FDSERR_QUEUE_CLOSED

Explanation: The queue no longer exists. The queue handle must be
closed. These APIs are associated with this error:

T AFdsReadQ() o

T AFdsWriteQ()Oo

-430 FDSERR_QUEUE_EMPTY

Explanation: There are no more messages in the queue. These APIs are
associated with this error:

T AFdsPurgeMsg() o

T AFdsReadQ() o

-440 FDSERR_QUEUE_FULL

ExplanationtiFdsWr it eQ() o0 was called and the queue
Your request has timed out and the message was not written to the queue

as a result of one of the following conditions:

I There was not enough space available in the queue for your message.

1 The queue was blocked by another write request.

A queue becomes blocked when a write request is received with the
WaitConfirm parameter set to FDS_WRITTEN, but there is not enough
space in the destination queue for the message. While a queue is
blocked, all subsequent write requests become blocked, in the order that
the write requests were received. As space becomes available in the
queue, IPC completes the blocked write requests in the order that they
were blocked. When IPC has completed all of the blocked write requests,

the queue is no longer blocked.

-450 FDSERR_QUEUE_NAME

Explanation: A queue name that is not valid was specified. Specific

conditions for this error include:

1 Either the specified queue name begins with the letters FDS, or the
specified queue name or resolved logical name exceeds the maximum
queue name length. These APIs are associated with this error:
iAFdsCreateQ() o
iTAFO@penQ() o

1T FdsBroadcastQ()o was called and the queue
a string, or it was a null string.

-460 FDSERR_QUEUE_NOT_FOUND

Explanation: The queue does not exist. The list below describes the

specific condition for this error for each API.

1 A Fds Op ewasxallpdand the queue does not exist on
the specified node.

1 Atthe file server, the MaxRequesters keyword must be set to the
number of workstations requesting file services. These APIs are
assouated with this error:

FdsCreat eDi

Cr e altFa K e

Del et eFi

Exi st Fil

Get Fil eA

OpenKeye

F
I
i
i
t
A
[

) 0

o
o

~ —~
o @
(72
)
N
o

OpenSeq
Quer yFi
RemoveDi
RenameFi
Restric
Set Fil e
Unre6)oi

~~— 0 O
® Oo—~C

mlnfo()o

—~ O
D
(2]
—
~
o

r(
Y89 O
| e
e (
tt
dFi
il
eS
r(
| e
Fi
Tt
ct

jm 1 e B 1 S 1 S 1 B 1 Sl 1 B 1 Jfen | Jfen | Jfen | Jfen | Jfen
TMTTMTMTTTMTTMTTTTT

000000000000
nu nononnnnonnonuonon
M-~ ———< O ™S ~——

—o— O
[=

-470 FDSERR_QUEUE_SIZE

Explanation:A queue size that is not wvalid was spe

-480 FDSERR_RAND_DIV

Explanation: A randomizing divisor that is not valid was specified to
AfFdsCreateKeyedFile()o.

-490 FDSERR_REC_SIZE

Explanation: A record size that is not valid was specified. Specific
conditions for this error include:
1 The record size is out of range. These APIs are associated with this
error:
iiFdsCreateKeyedFile()o

FdsReadBinFile()
FdsReadKeyedReco
FdsWrit)edi nFil e(
FdsWriteSeqgRecord()oo
AFdsWriteKeyedRecord()o was called and
does not match the size that was specified when the file was created.

ot 3 O It

-500 FDSERR_REMOTE

Explanation: A remote object was specified or remote communication was
requested when remote IPC has not been configured. Specific conditions
for this error include:

il

AfFdsResolvelLogi cNm() clocatnosel@ al |l ed and a

or role name was encountered. The string that caused the error is

returned.

AFdsCreat eQ() 0 walscalgwlelna® and a non
was specified. Queues can be created locally only.

A non-local queue name was specified and remote communication is not
configured. These APIs are associated with this error:
TAFdsOpenQ() o

TAFdsWriteQ()oOo

AiFdsBroadcast Q() 0 weosmunieatonisd and r emot
not configured.

A non-local file or directory was specified. These APIs are associated

with this error:

iAFdsQueryDistribution()©o
()

(
TAFdsSet Di stribution 0

-510 FDSERR_RESOLVED_NAME

Explanation: A definition that is not valid was provided for a logical name.
One of the following conditions could have caused the error:

f
f
1

The string is too long.
The string is not null terminated.
The string contains a delimiter mismatch.

These APIs are associated with this error:

f
f

AiFdsChangelLogi cNm() o
i FdsaCtreeLogi c Nm() o

-520 FDSERR_RESOURCE

Explanation: The application has too many concurrent requests running.

-530 FDSERR_ROLE_CHANGE

Explanation: The handle was associated with a role that has moved.
Specific conditions for this error include:

il

Either the file was opened with a role that has moved or the prime copy
of a distributed file was opened and the acting primary distributor has
been deactivated. The file must be closed.

These APIs are associated with this error:
iAFdsCreateSyncl D() o

t he

non

Del eRedKerydkd) ¢
FindNext Seq
Fl ushBi nFi
Quer yBi nFi
ReadBinFi l
ReadKeyedR
ReadSeqRec
Rel easeKey
ReturnSeqkF
SeekBi nFi

~
N Q_ O)
or—

N

o

o

~—~ AN~ ~— N O O—

oO~0r0/ =

I

[

e
e
0
e
i

e
e
L
S

I
I
e
e
i

TMTMTTTTTMMTTTTTTTT
0O 0000000000000 0
n v nunnnnnnnonoon

Wr i KeyedR

WriteSeqReco

AFdsWriteQ()o was called and

This operation is valid only on the acting primary distributor. These APIs

are associated with this error:

AFds AddDomai nNode () o

FdsCreateBcast Domai n(

FdsDeactivatePrimary(
n (
e ()

1 R 2 St S t S | S S ! St) S | S) e ! S) S } S | S ! Jiun 1]

=a =4
T
o
(2]
- o

FdsDel eteBcast Domai
FdsDel et eDomai nNod
Fds Get Domai nLi st (
Fds Get Domai nNodes
FdsQueryBackupSt a
FdsQueryDistribut
FdsSetDistributio
T AiFdsActivateAsPrimary()o06 was called and th

valid only on the configured backup distributor or configured primary

distributor when neither is the acting primary distributor.
f AFdsSetupDistMonitor()o was called and thi

valid only on the acting primary distributor or acting backup distributor.
1 An attempt was made to obtain write access to the image copy of a

distributed file (returned only if FDS_FILE_ACCESS_READ_WRITE was

specified). These APIs are associated with this error:

TAFdCr eat eKeyedFl le()o

TAFdsOpenBinFile()o

TAFdsOpenKeyedFile()Oo

TAFdsOpenSeqFil e()o
1 An attempt was made to update the image copy of a distributed file.

These APIs are associated with this error:

o1 B B B t B t M t B t M t B | B 1]

(o Zanhud

iAFdsDel eteFil e() o0
iTAFdsDel et eKeyedRecord() o
TAFds Remorv(e DD
iiFdsRenameFile()o
iiFdsSetBinFileSize()oOo
iAiFdsWriteBinFile()o
iAiFdsWriteKeyedRecord()o
iAiFdsWriteSeqRecord()o

-370 FDSERR_NOTIFY_QUEUE

Explanation: A notification queue handle that is not valid was specified to

AFdsOpenQ() 0. Paesi bl e probl ems

1 The queue with which the queue handle is associated has been closed.

1 The specified queue handle has not been initialized (using
AFdsCreat eQ() o).

-375 FDSERR_NOT_DISTRIBUTED

Explanation: The file or directory is not distributed. This error is associated
with AFdsCreateSyncl D()d6 and fiFdsSetDistribu

-380 FDSERR_NOT_RECONCILED

Explanation: The acting backup distributor is not fully reconciled. This error
is associated with fAiFdsActivateAsPrimary() o
fiFdsDeactivatePrimary () o.

-390 FDSERR_NUM_BLOCKS

Explanation: A number of blocks that is not valid was specified to
AFdsCreateKeyedFile()o.

-400 FDSERR_OS

Explanation: An unexpected, operating-system condition occurred. See the
event logs for details.

-410 FDSERR_OVERFLOW

Explanation: An internal buffer has reached its capacity. Specific conditions
for this error include:
1 The logical-name resolution was too complex or the system is out of file
handles. One of the following conditions could have caused the error:
T The input string resolves to a recursive, logical-name definition.
i The input string takes more than 500 logical-name resolutions to
completely resolve.
I The output string was longer than 2 times the maximum path length allowed
by the operating system.
These APIs are associated with this error:

iAFdsBroadcast Q() o
iAFdsCreateDir()o
|ﬁFdsCreateKeyedFﬂ l e() o
iAFdsDel eteFile()o

iAFdsExi stFile()o
iAiFdsGet FileAttributes()oOo
iAiFdsGet Fil eNames () 0
iAFdsOpenBinFile()o
iAFdsOpenKeyedFile()o
iAFdsOpenSeqFile()o

iAFds Quer yDiostri bution()
iAFdsQueryFileSystemlnfo()o
iiFdsRemoveDir ()o
iiFdsRenameFil e()o

iAiFdsRestrictFile()o
iiFdsSetDistribution()o
iAFdsSet Fil eAttributes()©o
iAFdsUnrestrictFile()o

1T "FdsResolvelLogicNm()o wmmme call ed and the |
resolution was too complex. One of the following conditions could have
caused the error:

i The input string resolves to a recursive, logical-name definition.

i The input string takes more than 500 logical name resolutions to
completely resolve.

i The output string was longer than 2 times the maximum path length
allowed by the operating system.

The partially resolved name is returned.

1 The logical name resolution was too complex or the system is out of
queue handles. These APIs are associated with this error:
iiFdsCreateQ() o
T AFds ap(e)no

-420 FDSERR_QUEUE_CLOSED

Explanation: The queue no longer exists. The queue handle must be
closed. These APIs are associated with this error:

T AFdsReadQ() o

T AFdsWriteQ()o

-430 FDSERR_QUEUE_EMPTY

Explanation: There are no more messages in the queue. These APIs are
associated with this error:

T AFdsPurgeMsg() o

T AFdsReadQ() o

-440 FDSERR_QUEUE_FULL

Explanation:AFdsWr it eQ()o0o was called and the queue
Your request has timed out and the message was not written to the queue

as a result of one of the following conditions:

1 There was not enough space available in the queue for your message.

1 The queue was blocked by another write request.

A queue becomes blocked when a write request is received with the
WaitConfirm parameter set to FDS_WRITTEN, but there is not enough
space in the destination queue for the message. While a queue is
blocked, all subsequent write requests become blocked, in the order that
the write requests were received. As space becomes available in the
queue, IPC completes the blocked write requests in the order that they
were blocked. When IPC has completed all of the blocked write requests,
the queue is no longer blocked.

-450 FDSERR_QUEUE_NAME

Explanation: A queue name that is not valid was specified. Specific
conditions for this error include:

1 Either the specified queue name begins with the letters FDS, or the
specified queue name or resolved logical name exceeds the maximum
queue name length. These APIs are associated with this error:
iAFdsCreateQ() o
iAFdsOpenQ() o

1 AFdsBr oad c accledahdthe gyeee name was not
a string, or it was a null string.

-460 FDSERR_QUEUE_NOT_FOUND

Explanation: The queue does not exist. The list below describes the
specific condition for this error for each API.
1T AFdsOpenQ() 0 was c alesmtkxisaand t he queue do

the specified node.
1 Atthe file server, the MaxRequesters keyword must be set to the

number of workstations requesting file services. These APIs are

associated with this error:
' iFdsCreat eDi
FdsCreat eKe
FdsDel et ekFi
FdsExi st Fil
FdsGet Fil eA
FdsOpenKeye
FdsOpenSeqFi
FdsQueryFile
Fds RemoveDir
FdsRenameFil
FdsRestricteF
FdsSet Fil eAt

c

I
I
1
1
1
1
:
:
I
I
I
I
i FdsUnrestri

jun) e} S | S) e ! S} Jien | St) e ! Jiun ! S ! S 1]

-470 FDSERR_QUEUE_SIZE

Explanation:A queue size that is not wvalid was spe

-480 FDSERR_RAND_DIV

Explanation: A randomizing divisor that is not valid was specified to
AFdsCreateKeyedFile()o.

-490 FDSERR_REC_SIZE

Explanation: A record size that is not valid was specified. Specific

conditions for this error include:

I The record size is out of range. These APIs are associated with this
error:

iIAFdsCreateKeyedFile()o
iAFdsReadBinFile()o
iiFdsReadKeyedRecord() o
iAFdsWriteBinFile()o
TAFdsWriteSegqgRecord()o

T AFdsWriteKeyedRecord()o was called and the

does not match the size that was specified when the file was created.

-500 FDSERR_REMOTE

Explanation: A remote object was specified or remote communication was
requested when remote IPC has not been configured. Specific conditions
for this error include:

T AFdsResol velLogi cNm() Glocatmosel2 al | ed and a non
or role name was encountered. The string that caused the error is
returned.

T AFdsCreateQ() 0 walscalguwlelnam® and a non
was specified. Queues can be created locally only.

1 A non-local queue name was specified and remote communication is not
configured. These APIs are associated with this error:
iAiFdsOpenQ() o
TAFdsWriteQ()Oo

T AFdsBroadcastQ()o6 was called and remote co
not configured.

1 A non-local file or directory was specified. These APIs are associated
with this error:
TAFdsQueryDistribution
TAFdsSet Distribution()

()0
(0]

-510 FDSERR_RESOLVED_NAME

Explanation: A definition that is not valid was provided for a logical name.
One of the following conditions could have caused the error:

I The string is too long.

I The string is not null terminated.

I The string contains a delimiter mismatch.

These APIs are associated with this error:

1T AFdsChangelLogi cNm() 0

T AFdsCreatelLogi cNm() o

1

-520 FDSERR_RESOURCE

Explanation: The application has too many concurrent requests running.

-530 FDSERR_ROLE_CHANGE

Explanation: The handle was associated with a role that has moved.

Specific conditions for this error include:

9 Either the file was opened with a role that has moved or the prime copy
of a distributed file was opened and the acting primary distributor has
been deactivated. The file must be closed.

These APIs are associated with this error:

'AiFdsCreateSyncl D() o0

FdsDel eteKeyedRecord() o

dsFi ndiRextoSa () 0O

dsFl ushBi nFi

dsQuer yBi nFi
ds

I 0
| z
ReadBinFil e

I
I
i
i
i e() o
I

oo 1 e ' B e ! B e 1

F
F e ()
F eSi
F () o

iiFdsReadKeyedRecord() o
iiFdsReadSeqRecord()o

iAFds Rel easeKeyedRecord() o
iAFdsReturnSeqFil ePos ()0
iAFdsSeekBinFil ePos() o0
iAFdsSeekSeqFil ePos() 0
iAFdsSetBinFileLocks()o
iAFdsSetBinFileSize()o
iAFdsWriteBinFile()Oo
iAiFdsWriteKeyedRecord()o
iAiFdsWriteSeqRecord()o
AFdsWriteQ()o was called and the
role that has moved and FDS_CONFIRM_ROLE was specified.

-540 FDSERR_ROLE_NAME

Explanation: A role name that is not valid was specified. One of the
following conditions could have caused the error:

f
f
f

=

The string is too long.

The string is not null terminated.

The string does not match the form <name::> where name is1to8
characters, and the less-than and greater-than characters (< and >)
and a double colon (::) are required characters.

The string begins with the prefix FDS.

The string contains more than two colons at the end of the role name.

These APIs are associated with this error:
FdsCreateDir()o

Fde@t eKeyedFile()o
FdsDeleteFile()o
FdsExistFile()o
FdsGet Fil eAttri butes() o
FdsOpenBinFile()o
FdsOpenKeyedFile()o
FdsOpenQ() o
FdsOpenSeqFile()o
FdsQueryFil eSystemlnfo()o
FdsRemoveDir()o
FdsRenameFile()o
FdsResol veRol eNm() o
FdsRestrictFile()o

F8et FileAttributes()o
FdsSet Reset Rol e() o
FdsUnrestrictFile()o
FdsVerifyRole()o

1
1 Jen : Siben t S) S | S | S | S | S | S | S | S | S | Jen | Sen | S) S | S 1§

-550 FDSERR_ROLE_NOT_FOUND

Explanation: The role is not active or could not be found. Specific

queue

wa s

conditions for this error include:
1 The role is not active on any node in the system. These APlIs are
assomated with this error:
AFdsCreat eDi
FdsCreat
FdsDel et eFi
FdsExi st Fi
Fds Get Fil
Fds Get Nod
FdsOpenBi
FdsOpenKe
FdsOpenQ(
FdsOpenSe
FdsQueryF
Fds Remove
Fds Rename
FdsRestri
FdsSet Fi l
FdsUnrest
1T AFdsSet ResetR
the Iocal node (returned only if FDS_|
T AFdsVerifyRol e(
the local node.
T AFdsResol veRol eNm()o0 was called; the role
the local node and FDS_CACHE_ONLY is specified, or the role is not
active on any node within the system.

D
A

')>""'_'_'HO’('DTIU):(>__('D_

Ie()o

— o~ To

mMm—~——~® © —
- D O =S~~~

(o

c

—

(]

wn

—~

~

o

o~~~ —< =
—_

oD~
~—
o

—

0
emlnfo()o

()o

o1 B B B B B B B { B { S { B { S { B | Jien | Bbn | Jien 1]
SO0 TMQgTaOa~Trs< oo

- = DOD~00 Wn

0
t e
()

—HH_(DAU)_
V;U(D m-—" ———< 0

m
o n—
m

[
e
r
[
F
t
c
0

- —o—~0O

)
u s
e o]
0 was called and the rol
T_ROLE is specified).

was called and the rol e

-555 FDSERR_SCOPE

Explanation: A scope that is not valid was specified to
fiFdsSetDistribution()o.

-558 FDSERR_SEEK_TYPE

Explanation: The specified parameter is not valid. Specific conditions for
this error include:
1 The value provided for the Origin parameter is not valid. You must provide
one of the following values:
i FDS_FILE_START_OF_FILE
i FDS_FILE_CURRENT_POS
i FDS_FILE_END_OF_FILE
The Origin parameter is used with these APIs:
iAFdsReadBinFile()o
iAiFdsSeekBinFilePos() o0
iAFdsWriteBinFile()o
1 The value provided for the SeekMethod parameter is not valid. You must
provide one of the following values:
i FDS_CACHE_ONLY
i FDS_NETWORK_ONLY
i FDS_CACHE_FIRST
The SeekMethodpar amet er i s used with AFdsResol ve

-560 FDSERR_SEQUENCE

Explanation: An operation occurred out of sequence. Specific conditions
for this error include:

il

AFdslInit()o or AFdslInit2()o has already be
successfully by this process or is currently being called by another thread
in this process.

fiFdsReadKeyedRecor dleracordias cal l ed and t
already locked (returned only if FDS_FILE_RECORD_LOCK_YES is

specified).

fFdsRel easeKeyedRecord()o was called and t
locked.

AFdsWriteKeyedRecord()o was called and the
locked (returned only if FDS_FILE_ RECORD_UNLOCK_YES is

specified).

AFdsSetDistribution()o was called and the

contained in a directory that is already distributed, or it is a directory that
contains a file which is already distributed.

AFdsActivateAsPrimary() o owas called and an
deactivation of the primary distributor is already in progress.
iFdsDeactivatePrimary()o was called and an
deactivation of the primary distributor is already in progress.
AFdsCreateSyncl D()0 was called and an atte

made to create a synchronization ID without having previously performed
a distributed file operation against the file. Most file operations performed
on DOU files are distributed, but only some operations performed on
DOC files are distributed.

-570 FDSERR_SYNCID

Explanation: A synchronization ID that is not valid was specified to
AiFdsSetupSyncl DNotify()o.

-575 FDSERR_THREAD_LIMIT

Explanation: This request could not be completed because too many
application threads currently have incomplete API calls to DDS. The calling
application might pause and then try the API call again. If this problem persists,
the number of application threads that can concurrently call DDS APIs should be
reduced. This error could be associated with any DDS API.

-580 FDSERR_TIMEOUT

Explanation: The request could not be completed within the specified time
limit. These APIs are associated with this error:

f
f
f
f

Fds Get Nodes () 0
FdsOpenQ() o
FdsReadQ() o
FdsWriteQ()o

) e 1 S) Jan 14

Appendix C. Operating-System Error Codes

The File System Interface component must return standard, operating-system
error codes for errors resulting from file-system operations. These error codes are
returned from file system APIs such as:

1 CreateFile() on Windows NT or Windows 2000
1 WriteFile() on Windows NT or Windows 2000
1 ReadFile() on Windows NT or Windows 2000

For normal file-system errors, the File System Interface component returns the
error code that it receives from the underlying, operating-system file system. The
error-code descriptions provided by the operating system include the information
necessary for diagnosing the cause of these errors.

However, in some cases, the File System Interface component returns operating
system error codes for problems unique to DDS. This chapter lists the operating-
system error codes that can be returned in these situations, and explains the
problems that will cause one of these errors to be returned. Because these
situations are unique to the File System Interface component of DDS, the errors
described in this section can only occur durng I/O operations against files stored
on controlled drives. See the IBM Distributed Data Services/Controller Services
Feature for Windows Installation and Configuration Guaenore information
about controlled drives.

Error Codes from Windows NT or Windows 2000

This section contains a list of error codes in decimal numeric order.

5 ERROR_ACCESS_DENIED

Explanation: Only the prime copy of a distributed file, or files in
distributed subdirectories, can be modified. Image copies of distributed
files can only be read. This error is returned under the following

conditions:

I On any attempt to modify an image copy of a file that has been
opened on the acting primary distributor when it is no longer the
acting primary distributor (after it has been deactivated)

1 On any attempt to modify an image copy of a file or subdirectory
using a name-based API (for example, deleting a file, removing a

directory, or changing extended attributes)

I On any attempt to remove a directory or create a file or
directory in an image copy of a distributed directory

1 On an open of an image copy with an access mode of

read/write or write-only

Services APls map thi
10 FDSERR_ACCESSO for

s error to The DDS
more information.

6 ERROR_INVALID_HANDLE

Explanation: All distributed files opened for write access should be
closed before DDS is stopped or the acting primary distributor is
deactivated. If a file is not closed, this error might be returned the next
time the file handle is used.

This error is also returned if a write is attempted to the prime copy of a
distributed file after the acting primary distributor has been deactivated.
When this error is received, the file should be closed and then reopened
after DDS has been restarted or the primary distributor has been
activated.

21 ERROR_NOT_READY

Explanation: This error occurs during all attempts to modify any file on
a controlled drive when DDS is not running; the File System Interface
component cannot access the information required to determine if a file
is distributed unless DDS is running. Attempts to open a file with an
access mode of read/write or write-only also result in this error, even
though the open operation itself does not cause the file to be modified.

Once DDS has been started, this error will be returned if an attempt is
made to modify a distributed file or a file in a distributed subdirectory,
when data distribution has not yet completed initialization.

The DDS File Services APIs map this error to FDSERR_DOWN. { S §1504
C5{9wwy5h2bé rmadiddd Y2NB Ay T2

