

QVS Distributed Data

Services/Controller

Services for Windows

Programming Guide

Version 3

First Edition (March 2001)

This edition applies to Version 3 of the QVS Distributed Data Services/Controller Services for Windows, and to all
subsequent releases and modifications until otherwise indicated in new editions.

First Edition (November 2004)

Updated March 17, 2006

This edition applies to Version 3 of the QVS 4690 QVS Distributed Data Services/ Controller

Services Feature (DDS/CSF) for Windows operating systems and to all subsequent releases and

modifications until otherwise indicated in new editions.

Download publications from www.qvssoftware.com. Email comments to

webmaster@qvssoftware.com or address your comments to:

QVS Software, Inc.

C/o Publications

5711 Six Forks Rd. Suite 300

Raleigh, NC 27609

USA

When you send information to QVS, you grant QVS a nonexclusive right to use or distribute the

information in any way it believes appropriate without incurring any obligation to you.

© Copyright QVS Software, Inc. 2004. All rights reserved.

http://www.qvssoftware.com/
mailto:webmaster@qvssoftware.com

Table of Contents

Table of Contents .. 3

Preface... 8

How This Manual Is Organized .. 8

Syntax Conventions .. 8

Required Parameters ... 8

Default Parameters .. 9

Optional Parameters .. 9

Repeating Parameters.. 10

Related Publications.. 10

Chapter 1. System Overview .. 11

Nodes .. 11

Node IDs ... 12

System ID.. 12

Logical Names and Role Names ... 13

Reserved Role Names ... 13

Broadcast Domains ... 14

Distribution Domains and Roles ... 14

File Names and Queue Names .. 15

Components .. 16

File Distribution .. 18

Disk I/O Prioritization... 18

Chapter 2. Introduction to the API .. 19

C Language Header Files .. 19

Building Your Application ... 19

Optimizing Application Performance ... 20

Memory Considerations .. 20

Multiple Threads and Processes.. 21

Designing Your Application ... 21

Accessing the Prime Copy of a File .. 21

Argument Formats .. 22

Error Codes ... 23

Initializing Your Application .. 23

FdsInit()... 23

FdsInit2()... 24

Chapter 3. Installation and Configuration ... 26

FdsQueryConfig() ... 26

Chapter 4. File Services .. 27

Services and Operation ... 29

Operating System and File System Restrictions ... 30

FdsCreateDir() .. 31

FdsDeleteFile() ... 32

FdsExistFile() .. 33

FdsGetFileAttributes() .. 34

FdsGetFileNames() ... 36

FdsQueryFileSystemInfo() ... 39

FdsRemoveDir() ... 40

FdsRenameFile() ... 42

FdsRestrictFile() ... 43

FdsSetFileAttributes() ... 44

FdsUnrestrictFile() .. 47

Keyed-File Services .. 48

Capabilities and Restrictions... 49

FdsCloseKeyedFile() .. 49

FdsCreateKeyedFile() ... 52

FdsDeleteKeyedRecord() .. 55

FdsOpenKeyedFile() ... 57

FdsReadKeyedRecord() .. 59

FdsReleaseKeyedRecord() .. 61

FdsWriteKeyedRecord() ... 64

Sequential File Services .. 66

FdsCloseSeqFile() ... 67

FdsFindNextSeqRecord() ... 68

FdsOpenSeqFile() ... 70

FdsReadSeqRecord() .. 72

FdsReturnSeqFilePos() ... 74

FdsSeekSeqFilePos() .. 76

FdsWriteSeqRecord() ... 78

Binary File Services .. 80

FdsCloseBinFile() ... 80

FdsFlushBinFile() ... 81

FdsOpenBinFile() ... 83

FdsQueryBinFileSize() ... 85

FdsSeekBinFilePos()... 89

FdsSetBinFileLocks() ... 91

FdsSetBinFileSize() .. 94

FdsWriteBinFile() ... 95

Chapter 5. Node Control ... 98

Node List ... 98

FdsGetNodes() .. 99

Obtaining the Status of the Acting Primary Distributor ... 101

Chapter 6. Data Distribution ... 103

File Types.. 104

Distribution Directory ... 105

Directory Management ... 106

Logical Names .. 106

Distribution Frequency ... 107

Reconciliation ... 108

Data Integrity and Availability ... 109

Activating and Deactivating the Acting Primary Distributor ... 110

User-Initiated Activation of the Primary Distributor .. 110

Automatic Switch-Over .. 112

Performance .. 113

Number of Distributed Files ... 114

Keyed Files ... 114

Restrictions ... 114

FdsActivateAsPrimary() ... 115

FdsAddDomainNode() .. 116

FdsCreateBcastDomain() .. 117

FdsCreateSyncID() ... 119

FdsDeactivatePrimary() .. 121

FdsDeleteBcastDomain() .. 122

FdsDeleteDomainNode() .. 123

FdsGetDomainList() ... 125

FdsGetDomainNodes() ... 126

FdsQueryBackupState() .. 128

FdsQueryDistribution() ... 129

FdsSetDistribution() .. 132

FdsSetupDistMonitor() ... 136

FdsSetupSyncIDNotify() .. 138

Chapter 7. Name Services ... 141

Creating Logical Names ... 142

Logical-Names File ... 143

Changing Logical Names .. 143

Deleting Logical Names ... 144

Logical Name Resolution ... 144

Creating Role Names .. 144

Role Name Resolution .. 145

Verifying Role Names .. 145

FdsChangeLogicNm()... 145

FdsCreateLogicNm() .. 146

FdsDeleteLogicNm() .. 148

FdsResolveLogicNm() .. 150

FdsSetResetRole()... 155

FdsVerifyRole() .. 157

Chapter 8. Interprocess Communication... 158

Writing Messages to Queues .. 159

FdsBroadcastQ() ... 161

FdsCloseQ() .. 164

FdsCreateQ() ... 165

FdsLockQ() ... 167

FdsOpenQ()... 168

FdsPurgeMsg() .. 171

FdsQueryQ() ... 173

FdsReadQ() ... 175

FdsUnlockQ() ... 178

FdsWriteQ() .. 179

Appendix A. Data Types... 184

Appendix B. Error Codes .. 190

-10 FDSERR_ACCESS .. 190

-20 FDSERR_ADDRESS ... 191

-25 FDSERR_APPL_DOWN ... 192

-30 FDSERR_BLOCK_SIZE ... 192

-40 FDSERR_BUFFER_SIZE.. 192

-50 FDSERR_CHAIN_THRESH ... 192

-60 FDSERR_CONFIG .. 192

-70 FDSERR_CORRUPT ... 193

-75 FDSERR_DATE_TIME ... 193

-80 FDSERR_DIR_INDICATOR .. 193

-90 FDSERR_DISK .. 194

-100 FDSERR_DISK_FULL .. 194

-110 FDSERR_DIST_FREQ .. 194

-120 FDSERR_DOMAIN_NAME ... 194

-130 FDSERR_DOMAIN_NOT_FOUND ... 194

-140 FDSERR_DOMAIN_TYPE ... 195

-150 FDSERR_DOWN ... 195

-160 FDSERR_EOF.. 195

-170 FDSERR_EXISTS.. 195

-180 FDSERR_FILE_FULL ... 196

-190 FDSERR_FILE_NAME ... 196

-200 FDSERR_FILE_NOT_FOUND ... 197

-210 FDSERR_FLAG ... 197

-220 FDSERR_HANDLE ... 198

-222 FDSERR_HANDLE_FORCED_CLOSED ... 198

-230 FDSERR_INIT ... 199

-240 FDSERR_INTERNAL ... 199

-250 FDSERR_INTERRUPT ... 199

-260 FDSERR_IO ... 199

-270 FDSERR_KEY ... 200

-280 FDSERR_KEY_NOT_FOUND ... 200

-290 FDSERR_KEY_SIZE .. 200

-300 FDSERR_LOGICAL_NAME .. 201

-310 FDSERR_LOGICAL_NAME_NOT_FOUND .. 201

-320 FDSERR_MEMORY ... 202

-325 FDSERR_MEMORY_CONSTRAINED ... 202

-330 FDSERR_MESSAGE_SIZE .. 203

-340 FDSERR_NODE_NAME .. 203

-350 FDSERR_NODE_NOT_FOUND .. 203

-360 FDSERR_NODE_TYPE .. 204

-370 FDSERR_NOTIFY_QUEUE ... 205

-375 FDSERR_NOT_DISTRIBUTED ... 205

-380 FDSERR_NOT_RECONCILED ... 205

-390 FDSERR_NUM_BLOCKS .. 205

-400 FDSERR_OS .. 205

-410 FDSERR_OVERFLOW ... 205

-420 FDSERR_QUEUE_CLOSED .. 206

-430 FDSERR_QUEUE_EMPTY .. 206

-440 FDSERR_QUEUE_FULL.. 206

-450 FDSERR_QUEUE_NAME .. 207

-460 FDSERR_QUEUE_NOT_FOUND.. 207

-470 FDSERR_QUEUE_SIZE ... 207

-480 FDSERR_RAND_DIV ... 207

-490 FDSERR_REC_SIZE ... 207

-500 FDSERR_REMOTE ... 208

-510 FDSERR_RESOLVED_NAME .. 208

-520 FDSERR_RESOURCE .. 208

-530 FDSERR_ROLE_CHANGE .. 208

-370 FDSERR_NOTIFY_QUEUE ... 209

-375 FDSERR_NOT_DISTRIBUTED ... 210

-380 FDSERR_NOT_RECONCILED ... 210

-390 FDSERR_NUM_BLOCKS .. 210

-400 FDSERR_OS .. 210

-410 FDSERR_OVERFLOW ... 210

-420 FDSERR_QUEUE_CLOSED .. 211

-430 FDSERR_QUEUE_EMPTY .. 211

-440 FDSERR_QUEUE_FULL.. 211

-450 FDSERR_QUEUE_NAME .. 211

-460 FDSERR_QUEUE_NOT_FOUND.. 212

-470 FDSERR_QUEUE_SIZE ... 212

-480 FDSERR_RAND_DIV ... 212

-490 FDSERR_REC_SIZE ... 212

-500 FDSERR_REMOTE ... 213

-510 FDSERR_RESOLVED_NAME .. 213

-520 FDSERR_RESOURCE .. 213

-530 FDSERR_ROLE_CHANGE .. 213

-540 FDSERR_ROLE_NAME ... 214

-550 FDSERR_ROLE_NOT_FOUND ... 214

-555 FDSERR_SCOPE ... 215

-558 FDSERR_SEEK_TYPE ... 215

-560 FDSERR_SEQUENCE .. 216

-570 FDSERR_SYNCID .. 216

-575 FDSERR_THREAD_LIMIT .. 216

-580 FDSERR_TIMEOUT ... 216

Appendix C. Operating-System Error Codes.. 217

Error Codes from Windows NT or Windows 2000 .. 217

5 ERROR_ACCESS_DENIED .. 217

6 ERROR_INVALID_HANDLE ... 218

21 ERROR_NOT_READY .. 218

Preface
This manual explains how to use the application programming interfaces (APIs)

provided with Distributed Data Services (DDS) to develop distributed applications.

Who Should Read this Manual

This manual is primarily for retail systems programmers who are programming

using DDS/CSF on the Windows operating systems.

This manual assumes that readers are familiar with the Windows operating

systems and are proficient in C language programming.

How This Manual Is Organized
This manual is separated into eight chapters and three appendixes:

Syntax Conventions
The syntax of DDS command line commands is shown using graphic notation

consisting of a statement that is tailored to the parameter requirements of each

command. To read the diagrams, follow the main path line and move from left to

right and from top to bottom.

Syntax diagrams use symbols to identify the sequence of information:

¶ A command statement begins with: and ends with:

¶ A command statement longer than one line continues to a

second line with:

¶ where it resumes with:

Required Parameters

A parameter that you must include is displayed on the main path line:

If a command statement has two or more required parameters, they are shown

consecutively on the main path line. A choice of required parameters is shown with

one choice on the main path line and the other choices on branch lines below the

first choice:

Type this command in one of two ways:

command keyword1 keyword2 (variable)
command keyword1 keyword2 (*)

Default Parameters

A default parameter is shown on a branch line above the main path line:

keyword1 is the default.

Optional Parameters

Parameters that you can include are shown on branch lines below the main path

line:

Type this command in one of the following ways:
command
command variable
command keyword

Branch lines can include branch lines of their own:

If you include the keyword parameter in this statement, you must also include

on or off .

Repeating Parameters

An arrow on a line above a parameter menas that you can repeat the parameter,

or enter more than one of the listed parameters:

The arrow above variable means that you can include one or more values when

you type com mand . The diagram indicates that a blank space is required

between each variable value.

For commands that have optional separators between repeated values of

a variable:

The arrow above variable means that you can include one or more values when

you type command . This diagram indicates that a comma can optionally be

placed between each variable value.

If a syntax diagram contains notes, the note numbers correspond to
numbered elements shown in the diagram within parentheses:

where:
1. This is a syntax note that refers to the keyword command .
2. This syntax note describes variable.

Related Publications
In addition to this manual, you may want to consult the following publications.

¶ QVS Distributed Data Services/Controller Services for Windows

 Installation and Configuration Guide.

¶ QVS Distributed Data Services/Controller Services for Windows Userôs

Guide

All of these publications may be downloaded from the QVS web site at

www.qvssoftware.com. You may also call QVS at (919) 676-1991 for

assistance.

http://www.qvssoftware.com/

Chapter 1. System Overview
The IBM Distributed Data Services/Controller Services Feature (DDS/CSF) is a

distributed software platform designed as a base for the development of

distributed applications for the store environment.

The main functions are:

¶ Interprocess communication with local and remote transparency

¶ Data access with local and remote transparency

¶ Data distribution for redundancy, performance, and availability

¶ Directory services

¶ Installation, configuration, and administration

The following sections provide an overview of the concepts that are common to all

components of DDS:

¶ ñNodesò

¶ ñLogical Names and Role Namesò

¶ ñBroadcast Domainsò

¶ ñDistribution Domains and Rolesò

¶ ñFile Names and Queue Namesò

¶ ñComponentsò

¶ ñFile Distributionò

¶ ñDisk I/O Prioritizationò

Nodes
A node is a LAN-attached machine that is running DDS.

Nodes can be connected via LANs to form a system. A system is the group of

nodes for which files are managed. A node can be connected to a subset of

nodes via one LAN and to other subsets of nodes via different LANs. Data

distribution, remote file access, and interprocess communication are supported

only between nodes that are connected by a LAN. DDS does not provide a bridge

or router function.

For all system topologies with more than one node, one node must be installed

and configured as the configured primary distributor and another node can be

installed and configured as the configured backup distributor. The backup

distributor is required to add redundancy to the critical store data. Each node must

be connected to the primary distributor and backup distributor by a LAN. See

ñDistribution Domains and Rolesò for an explanation of primary distributor, backup

distributor, and subordinate.

Node IDs

Node IDs are specified for each workstation (node) during the installation of

DDS, and assumed each time DDS initializes. Each node has a single node ID,

regardless of how many LANs are used to connect it to other nodes.

The rules for node IDs are:

¶ Each workstation within a system must have a different node ID. Duplicate

nodeIDs are not confirmed during installation, but they are detected when

DDS initializes. If duplicate node IDs are detected, you must reinstall DDS

to correct the problem.

¶ No two workstations on a LAN can have the same

node ID even if they are members of different DDS

systems.

¶ Node IDs can be from 1 to 8 alphanumeric characters

(blanks are not allowed). Node IDs are case-sensitive.

¶ Do not use node IDs whose first three characters are

FDS. These names are reserved.

¶ Greater than and less than characters (< and >),

question marks (?), asterisks (*), and colons (:) are

not valid characters for node IDs.

¶ After installation, node IDs can be changed only by

reinstalling DDS.

System ID

Each system has a 4-byte system ID. The system ID is specified at each node

during the installation of DDS, and defaults to 0000. The Name Services

component uses the system ID as a qualifier when locating the node that has

assumed a particular role. See ñLogical Names and Role Namesò for a description

of roles. This ensures, for example, that each node finds the acting primary

distributor for its system, and that files are distributed only within a system. The

system ID must be set to a unique value for each system in environments where

multiple systems are interconnected via bridges. A system ID cannot be changed

without reinstalling DDS.

If you assign a different system ID to each system, the systems can be connected

using a LAN or a gateway without causing messages intended for one system to

be sent to another system.

If you assign the same system ID to each system, the LANs can be connected

using a gateway; both LANs are considered the same system. If this type of

system is used and you are using the Data Distribution component, there should

only be one configured primary distributor and one configured backup distributor

for the entire system, even though they might be on different LANs.

Logical Names and Role Names
DDS provides a name-resolution capability, allowing applications to use logical

names instead of hard-coded file names, interprocess communication (IPC)

queue names, and node IDs. These logical names are dynamically resolved

when the application runs.

Some names are fairly static over time. An example is the name of a

configuration file. Although this name is not likely to change very often, if ever, it

is still desirable to avoid using the name in an application program. The use of a

logical name allows the file name to be changed without having to rebuild the

application. A logical name has the following format:

<name>

Where name is 1 to 260 characters and the less than and greater than

characters (< and >) are required delimiters.

Other names are more dynamic, such as the node ID of the primary distributor.

This changes whenever the backup distributor takes over for the primary

distributor. In this case a role (the primary distributor) is assumed by a particular

node. A logical name can be used to identify this role and is referred to as the role

name. A role name has the following format:

<name::>

Where name is 1 to 8 characters, the less than and greater than characters (<

and >) are required delimiters, and double colons (::) indicate that this is a role

name.

The use of a role name makes it easy for an application to open a file or IPC

queue on a node that provides a particular service when the service may move

from node to node as conditions change. The primary distributor is an example of

a service provided by DDS. Applications can be written that provide other services

and role names can be defined for them.

Note: Hard links cannot be used for distribution names.

Reserved Role Names

The following role names are reserved by DDS and are used to identify the

primary distributor and backup distributor nodes. These names are dynamically

maintained by DDS and cannot be modified by the user.

Role Name

Reserved For:

FDSFDXCP::

Configured primary distributor

FDSFDXCB::

Configured backup distributor

FDSFDXAP::

Acting primary distributor

FDSFDXAB::

Acting backup distributor

Broadcast Domains
A subset of nodes within a system can be grouped into a broadcast domain.A

broadcast domain has a name, the broadcast domain name, which has the

same format as a node ID: 1 to 8 bytes. However, DDS reserves all broadcast

domain names that begin with the prefix FDS.

Note: DDS currently supports a maximum of one broadcast domain.

Broadcast domains are useful for maximizing performance and minimizing

resource utilization when distributing messages or files to a large number of

nodes. Within a broadcast domain, DDS exploits the LAN hardwareôs ability to

broadcast a datagram to all nodes. The DDS Data Distribution component

supports distributing files to all nodes within a broadcast domain. The Interprocess

Communications component can send a message to every node within a

broadcast domain.

Distribution Domains and Roles
Each node can assume a distribution role. There are three possible

distribution roles:

Primary D istributor

The primary distributor controls the primary copy of all distributed files.

Only the primary copy of a file can be modified directly by an application.

 Backup Distributor

The backup distributor controls the backup copy of a file and can take

over for the primary distributor if the primary distributor fails or is

deactivated.

 Subordinate

All other nodes configured with the Data Distribution component are

considered subordinates and manage image copies of distributed

files.

A node can be configured with a distribution role, but under certain

circumstances can assume another role. In that instance, the node is said to be

acting the role. Specifically, when a node that is configured as the backup

distributor assumes the role of the primary distributor that has failed, the backup

distributor is said to be the acting primary distributor.

A group of nodes form a distribution domain. There are two types of
distribution domains:

Mirrored domain

Defined to be the primary distributor and backup distributor. There is

only one mirrored domain, so it is not named.

Broadcast domain

A broadcast domain can include zero (0) or more nodes. Files that

are distributed to a broadcast domain are distributed to each node

in the domain, as well as to the acting backup distributor.

A given file can be distributed to only one domain.

By default, all files on a node are local files. A local file is a file that is not
distributed (is not a primary copy, backup copy, or image copy). A file or
subdirectory on the acting primary distributor can be made distributed using
either the Data Distribution Utility or an application that calls the
FdsSetDistribution() API. See the IBM Distributed Data Services/Controller
Services Feature for Windows Userôs Guide for more information about using
the Data Distribution Utility. See FdsSetDistribution() for more information about
using the API.

File Names and Queue Names
For a specific node, you can identify each file using the operating system path

where the file is located and the file name. The operating system path and file

name are called the file specification. Similarly, you can identify a queue using

the queue name.

However, with DDS you can access files and queues on any node. Therefore,

you must use a retail path specification to identify the file or queue. A retail path

specification contains a node specification or broadcast domain specification

prefixed to the file specification or queue name.

Note: If you do not include a node or broadcast domain specification in the retail

path specification, Distributed Data Services assumes that the file or

queue resides locally.

A node specification can be in one of these forms:

¶ A node name followed by two colons, which specifies the ID

of the node directly. For example:

NodeID::

¶ A role name followed by two colons and delimited with the greater than and

less than signs. The role name will resolve to the ID of the node that is acting

in the role. For example:

<RoleName::>

A broadcast domain specification is valid only to identify a queue. It must
be a string, containing no blank characters, that includes a broadcast
domain name followed by two colons. For example:

B_DOMAIN::

Assume that you have a file called MYFILE.DAT located in the subdirectory
D:\FILES on the primary workstation with a node ID of Node1. The following
retail path specifications are valid:

D:\FILES\MYFILE.DAT

Node1::D:\FILES\MYFILE.DAT

<FDSFDXAP::>D:\FILES\MYFILE.DAT

You can also use logical names for any part (or all) of a retail path specification.
See ñLogical Names and Role Namesò for more information about logical names.

Note: If you use a logical name for a file name or queue name in a retail path

specification that contains a remote node ID or role name, the logical name is
resolved on the remote node.

Components
The components for DDS are:

Name Services

Provides a name-resolution capability. This allows applications to use

logical names, or aliases, instead of hard-coded file names, IPC queue

names, and node IDs. These logical names are dynamically resolved at

run time.

See ñChapter 7. Name Servicesò for more information.

File Services

Allows you to access both local and remote files. It can be

optionally configured on zero or more nodes to share files with

other nodes.

Three types of files are supported:

o Keyed files

o Sequential files

o Binary files

See Chapter 4. File Services for more information.

File System Interface

Provides support to distribute native operating system files, referred to

as byte stream files.

This component also provides a disk I/O prioritization mechanism that

overrides the standard operating system prioritization scheme. DDS

prioritizes disk I/O based on thread priority, allowing high priority

requests, such as price lookups, to be processed ahead of lower priority

requests.

Interprocess Communications

Provides a peer-to-peer messaging service that allows application

programs to send and receive messages. The messaging service is

provided between processes running on a single node (intranode IPC) and

on different nodes (internode IPC). The internode IPC function is a

configuration option. It is required on all nodes in a system unless the

system consists of a single standalone node.

The following LAN media are supported:

o Ethernet

o Token ring

o IBM Wireless LAN

Note: If you install the DDS 4690 Controller Services Feature, DDS

also provides store loop support.

Data Distribution

The Data Distribution component provides a distributed file capability

that replicates data to multiple nodes, keeping each image

synchronized during normal operations. It also performs reconciliation

when failed nodes are brought back into service. See Chapter 6. Data

Distribution for more information.

Node Control

This component allows you to perform administrative functions such as

viewing information about the nodes within the DDS system and

activating or deactivating the primary distributor. These aspects of node

control are used through a utility. Node control is also responsible for

synchronizing the time and date of all nodes within a system.

There is also an API that generates a list of all node IDs known to the

DDS system, including nodes that DDS has detected as being active on

the system and user-defined nodes that are not yet active.

See the IBM Distributed Data Services/Controller Services Feature

for Windows Userôs Guide for more information about starting and

stopping DDS and using the Node Control Utility. See ñNode Listò for

more information about using the node list API.

Problem Determination and Analysis

The Problem Determination and Analysis component collects problem

determination information. The information is presented on an interactive

panel that allows you to select the system message logs, system error

logs, and system dump files you wish to work with.

4690 Controller Services

This optional feature can be installed on one or two nodes. It supports

4680/4690 Operating System controller applications running under

Windows NT, 2000, XP, or Server 2003 and the attachment of registers

running the 4690 Operating System. Refer to the IBM Distributed Data

Services/Controller Services Feature for Windows Userôs Guide for more

information about 4690 Controller Services.

4690 Multiple Controller Feature

This optional feature can be installed on zero or more nodes. It

provides support for 4690 Controller Services Feature nodes to

interact with other 4690 Controller Services Feature nodes. It also

provides support for 4690 terminal backup in a multi-node

environment. Refer to the IBM Distributed Data Services/Controller

Services Feature for Windows Userôs Guide for more information about

4690 Multiple Controller Feature.

File Distribution
DDS enables the distribution of files to other nodes in a distribution domain. When

a file operation is directed to a controlled drive, DDS determines if the file has

been defined as a distributed file or is in a distributed subdirectory, and then

distributes the file operation as appropriate to other nodes.

File distribution is performed with no user intervention. Any operating system

command (for example, COPY or ERASE) or application program statement that

results in the modification of a distributed file causes DDS to distribute the

operation to other nodes.

DDS must be running to detect whether a file is distributed. Until DDS is started, it

assumes that all files on a controlled drive are distributed. Therefore, any attempt

to modify a file on a controlled drive when DDS is not running results in an error.

Note: If the DDActive configuration keyword is set to NO, DDS does not check

to see if files on controlled drives are distributed, so this error is not

returned. See the Configuration Keywords chapter in the IBM Distributed

Data Services/Controller Services Feature for Windows Installation and

Configuration Guide for more information about the DDActive

configuration keyword.

See Chapter 6. Data Distribution for more information about distributing files.

Refer to the Planning for DDS chapter in the IBM Distributed Data

Services/Controller Services Feature for Windows Installation and Configuration

Guide for more information about controlled drives.

Disk I/O Prioritization
Processing certain file I/O operations is extremely time critical in the retail

environment. For example, when scanning items at the point-of-sale terminal, the

salesperson expects a consistent response time. If the processing load on the

disk used to service price lookup requests increases, the response time

experienced by salespeople scanning items at the point-of-sale terminals should

remain relatively constant.

DDS uses a disk I/O prioritization scheme to assure that time-critical processes

are given highest priority for disk access. This prioritization scheme overrides the

standard operating system prioritization scheme, so that file access is granted

based on the operating system priority of the process thread issuing the request.

To take advantage of disk I/O prioritization, an application program can increase

the priority level of time-critical threads using the SetThreadPriority() API on

Windows NT, 2000, XP, or Server 2003.

Disk I/O prioritization is most effective when all partitions on a single physical

disk are controlled by DDS. This should be considered when configuring

partitions as controlled drives. Refer to the Planning for DDS chapter in the

IBM Distributed Data Services/Controller Services Feature for Windows

Installation and Configuration Guide for more information about controlled

drives.

Chapter 2. Introduction to the API
The DDS application programming interface (API) is a collection of individual

functions (also referred to as APIs) that you can use to enable your applications to

interact with DDS.

Your application can be one of many applications that concurrently uses DDS.

This chapter describes the general interaction between your application and DDS.

C Language Header Files
DDS provides the C-language header files required to compile your program using

the API. The default location of the header files is in the target_install_directory\fds

directory of the disk on which DDS was installed.

The complete list of header files is:

¶ config.h

¶ defs.h

¶ dist.h

¶ errno.h

¶ fds.h

¶ file.h

¶ ipc.h

¶ names.h

¶ nodes.h

Building Your Application

To build your application:

¶ Include the C-language header files in your application.

¶ Link your application executable to the DDS import libraries, which are

located in

target_install_directory\lib.

The import libraries for Windows are as follows:

¶ fdsbase.lib

¶ fdscfg.lib

¶ fdsfile.lib

¶ fdsipc.lib

¶ fdsnames.lib

¶ fdsnodes.lib

The DDS API functions use the same parameter passing conventions as

operating-system API functions. Any compiler that supports the calling of

operating system APIs can be used to call DDS API functions.

DDS directly supports the following compilers:

¶ IBM VisualAge C++ for Windows, Version 3.5

or higher

¶ Microsoft
®

Visual C++
®

, Version 2.0 or higher

In addition to the above compilers, DDS can be used with other compatible 32-

bit compilers. The C header files included with DDS are standard C code, and

the import libraries are standard import libraries (generated using implib.exe).

Note: If you use the Microsoft Visual C++ compiler, you must compile

with Optimization set to Off.

If you intend to use a compiler with a default calling convention that differs from

the operating-system linkage convention, you must modify the DDS header file

(defs.h). You must set the constant FDS_SYSLINK in the header file to the

reserved keyword used by the compiler to indicate operating-system linkage

conventions. To specify the calling convention for a given function, that keyword

must be used when the function is declared. Refer to your compiler documentation

for more information.

Calling DDS API functions from languages other than C or C++ is possible, but no

header files are included. The only requirement is that the language must be able

to call functions using the operating-system linkage conventions, including passing

pointers to variables and null-terminated strings.

Optimizing Application Performance
Read this section before you write applications to learn how to optimize the rate

at which the applications function in conjunction with DDS. Some performance

tuning can be done with little modification to the application, but some must be

designed into the program. The following sections discuss several ways to

optimize the performance of an application that is using DDS.

Memory Considerations

There is a direct correlation between the maximum queue size specified on

the FdsCreateQ() API and the amount of memory required by DDS.

Therefore, you should not create queues larger than necessary.

Each thread that uses DDS requires an amount of memory that is slightly

greater than the size (in bytes) of all parameters being passed to and returned

by a particular call to the API plus sufficient memory for an additional stack.

There is also a process-related memory overhead approximately the size of a

single threadôs overhead.

Multiple Threads and Processes

DDS supports multiple applications on the same node simultaneously utilizing

DDS. Additionally, multiple threads of a process can run within DDS concurrently

(referred to as multi-threaded).

The following restrictions apply to each thread in a multi-threaded application:

¶ A single thread can open an IPC queue, keyed file, or sequential file

multiple times without intervening close operations. The FileAccess

attributes specified on each open of the same keyed or sequential file

need not be identical. (The FileAccess attributes are described in

ñFdsOpenKeyedFile()ò.)

¶ DDS file handles and queue handles are not inherited by child processes

and cannot be shared between processes.

¶ There are no differences between the restrictions on access to a single

keyed or sequential file for two processes on the same node and the

restrictions on access to a single file for two processes on different nodes.

See “Memory Considerations” for information about memory requirements.

Designing Your Application
This section describes attributes of DDS that apply to any of its functions.

Consider these attributes when designing your application.

Accessing the Prime Copy of a File

The prime copy of a distributed file exists on the acting primary distributor. The

application can access this version of the file from any node in the system via

the File Services APIs by using the acting primary role as part of the retail path

specification (the acting primary role is <FDSFDXAP::>).

The prime copy of the file becomes unavailable when the acting primary role is

deactivated or the acting primary distributor becomes unavailable. If this

happens, the File Services APIs will return error code -530

FDSERR_ROLE_CHANGE or -350 FDSERR_NODE_NOT_FOUND

respectively.

Your application should perform the following steps:

1. Close the file handle using the appropriate File Services API.
2. Save any updates to the prime copy in a local file to be applied when the

prime copy becomes available.
3. Attempt to reopen the prime copy.

Note: The File Services APIs have no time-outs. Therefore, it is up to
the application to continually attempt to open the file, with some delay between
each attempt, to avoid overutilizing system resources.

4. If the prime copy cannot be reopened, indicate to store personnel that the
primary distributor is unavailable and that the backup distributor should be
activated as the primary distributor.

Note: Accessing the prime copy of a file is a remote file access and,

therefore, slower than a local file access. If the application is simply

reading data from a distributed file, it should access the image copy of

the file using the File Services APIs. DDS will distribute any changes

made to the prime to all image copies of the file.

Argument Formats
Some common types of arguments are of a standardized format throughout
DDS. Follow these rules for your application when you use one of these types:

All pointer arguments passed to a DDS function must point to valid memory on
input. DDS does not allocate application memory.

DDS validates pointer arguments. If pointer arguments are not valid, the error -10
FDSERR_ACCESS is returned.

All (char *) arguments passed to a DDS function must be null terminated. All
(char *) arguments returned by a DDS function are also null terminated.

All length parameters in the API associated with (char *) parameters include the
null terminator (\0).

Each file name passed to an API must be either a fully qualified file specification
or a logical name that resolves to a fully qualified file specification.

Most of the DDS APIs require one or more of these types of parameters:

Input

Input parameters are those for which the application must provide valid data
when the API is called.

For example, FileName is an input parameter for ñFdsGetFileAttributes()ò. When
FdsGetFileAttributes() is called, FileName must be a valid name of an existing
file.

Input/Output

Input/output parameters are those for which the application must provide valid
data when the API is called. When the API has completed (successfully or
unsuccessfully, depending on the API), DDS replaces the data passed in.

Note: When pointers are passed to an API, DDS replaces the value in the
location pointed to by the pointer. It does not modify the pointer itself.

For example, RecordSizePtr is an input/output parameter for
ñFdsReadKeyedRecord()ò. When FdsReadKeyedRecord() is called, the value in
the location pointed to by RecordSizePtr is the maximum size of the record to
read.

When the API has completed successfully, the value in the location pointed to by
RecordSizePtr is replaced with the actual size of the record read.

If the API does not complete successfully and the error is -490
FDSERR_REC_SIZE,the value in the location pointed to by RecordSizePtr is
replaced with the size of the record that could not be read.

Output

Output parameters are those for which the API returns a value to the application.
However, the application must provide a valid data location for the API to provide

a value when the API is called.

For example, CurrentSize is an output parameter for ñFdsQueryBinFileSize()ò.
When FdsQueryBinFileSize() has completed successfully, the value in the
location pointed to by CurrentSize is the current size of the binary file in bytes.

CurrentSize must be a valid pointer of type unsigned long when the API is
called. The API does not return a pointer; it replaces the value stored in the
location pointed to by CurrentSize.

Error Codes

The following list contains the error codes that could be returned from any API

call. The correct application recovery for each error is specified in Appendix B.

Error Codes.

¶ -20 FDSERR_ADDRESS

¶ -150 FDSERR_DOWN

¶ -230 FDSERR_INIT

¶ -240 FDSERR_INTERNAL

¶ -250 FDSERR_INTERRUPT

¶ -320 FDSERR_MEMORY

¶ -400 FDSERR_OS

¶ -520 FDSERR_RESOURCE

Initializing Your Application
The first thing your application must do to use DDS APIs is to register by calling either the

FdsInit() API or the FdsInit2() API.

FdsInit()

Purpose
Initializes DDS for use by the application.

Syntax
#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>

long FdsInit();

Remarks
After any thread of a process calls this API, all threads of that process are

initialized. Therefore, FdsInit() must be called exactly once for each

process.

Either FdsInit() or FdsInit2() must be called successfully before any other DDS

APIs are used.

Note: To share memory among processes, DDS uses the address hex

40000000 as its base memory address. If a call to FdsInit() returns the

error ñ-400 FDSERR_OSò, and logs the following message in the event

logs: The operating system returned error 487 at location 50303 , then

the memory used by your application is conflicting with the DDS memory

address.

To change the DDS base memory address, add the environment

variable FDS_SHARED_MEMORY to the system configuration in the

Registry, specifying another memory address. The memory address

must be within the range of hex 01000000 and hex 75000000.

Otherwise, DDS will not initialize and an error will be logged.

Error Conditions
FdsInit() returns the following values:
-170 FDSERR_EXISTS
-200 FDSERR_FILE_NOT_FOUND
-560 FDSERR_SEQUENCE

Examples
#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc = 0;
/* Before using APIs, you must initialize Distributed Data Services */
rc = FdsInit();
if (rc != FDS_SUCCESS)
{

printf ("Initialization failed (rc = %X). \n", rc);
exit (0);

}

FdsInit2()

Purpose
Initializes DDS for use by the application. The difference between FdsInit()

and FdsInit2() is that FdsInit2() will not complete until DDS has been started

and initialized completely if you specify FDS_INIT_WAIT_FOR_DDS.

Syntax
#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>

long FdsInit2(unsigned long InitFlags);

Parameters

InitFlags ð input

Determines whether the API will complete (returning control to the

application) as soon as DDS has starting initializing or will wait until

DDS has completed initialization. Valid values are:

FDS_INIT_DEFAULT

The API will complete as soon as it starts DDS without waiting

for DDS to initialize completely. This value is the default.

FDS_INIT_WAIT_FOR_DDS

The API will not complete until DDS has been started and

initialized completely.

Remarks
After any thread of a process calls this API, all threads of that process are

initialized. Therefore, FdsInit2() must be called exactly once for each

process.

Either FdsInit() or FdsInit2() must be called successfully before any other DDS

APIs are used.

Note: To share memory among processes, DDS uses the address hex

40000000 as its base memory address. If a call to FdsInit2() returns the
error ñ-400 FDSERR_OSò, and logs the message The operating system
returned error 487 at location 50303 in the event logs, the memory used by

your application is conflicting with the DDS memory address.

To change the DDS base memory address, add the environment

variable FDS_SHARED_MEMORY to the system configuration in the

Registry, specifying another memory address. The memory address

must be within the range of hex 1000000 and hex 75000000.

Otherwise, DDS will not initialize and an error will be logged.

Error Conditions
FdsInit2() returns the following values:
-170 FDSERR_EXISTS
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-560 FDSERR_SEQUENCE

Examples
#include <stdlib.h>
#include <stdio.h>
#include <fds/fds.h>
#include <fds/errno.h>
long rc = 0;
long int InitFlags = 0;
/* Initialize Distributed Data Services and wait for init to complete */
InitFlags = FDS_INIT_WAIT_FOR_DDS;
rc = FdsInit2(InitFlags);
if (rc != FDS_SUCCESS)
 {
 printf ("Initialization failed (rc = %X). \n", rc);
 exit (0);
 }

Chapter 3. Installation and Configuration
DDS provides an API that you can use from your program to obtain information

about the installation and configuration of the product on the local node. This data

cannot change while DDS is running, so you must issue the API call only one

time when each application is started.

An FDS_CFG structure is provided in the DDS header file, CONFIG.H, and it

should be used to declare a variable. During the initialization of your application

program, you can issue the API call to request that DDS store the current

configuration information in this variable. This variable can be referred to while

your application is running without having to make subsequent calls to DDS.

FdsQueryConfig()

Purpose
Obtain configuration data.

Syntax

#include <fds/config.h>

long FdsQueryConfig(FDS_CFG *ConfigInfo, unsigned int *BufferSize);

Parameters

ConfigInfo ð input/output

Input A pointer to an FDS_CFG structure in which the configuration

data is placed.

Output

When this API completes successfully, the data in the

structure pointed to by ConfigInfo is replaced by the current

configuration data. See ñAppendix A. Data Typesò for more

information about the FDS_CFG data structure.

BufferSize ð input/output

Input A pointer to the size of the structure to be returned. This value

must specify the length of memory pointed to by ConfigInfo.

Output

When this API completes successfully, the value pointed to by

BufferSize is replaced with the size of the configuration

structure that was copied to the input buffer pointed to by the

ConfigInfo parameter. If this API returns the error -40

FDSERR_BUFFER_SIZE,this parameter is set to the required

buffer size.

Remarks
This API is used to obtain the current installation and configuration data for DDS.

This API does not provide logical-names configuration data. See Chapter 7.

Name Services for more information about how to query logical-names

configuration data. Your applications are required to call this API only once each

time an application runs because the installation and configuration data used by

DDS does not change while it is running.

Error Conditions
FdsQueryConfig() returns the following values:

¶ -20 FDSERR_ADDRESS

¶ -40 FDSERR_BUFFER_SIZE

Examples
The example below declares a variable of type FDS_CFG, which is used to hold the

configuration data. This API is called to update the configuration structure with the current

configuration data.

#include <fds/config.h>

#include <fds/fds.h>

#include <fds/errno.h>

FDS_CFG ConfigData;

long rc;

unsigned int ConfigDataSize;

ConfigDataSize = sizeof(ConfigData);

rc = FdsInit();

// If initialization was successful

if (rc == FDS_SUCCESS)

{

 rc = FdsQueryConfig(&ConfigData,&ConfigDataSize);

 if (rc != FDS_SUCCESS)

 {

 /* perform error processing */

 }

}

Chapter 4. File Services
The File Services component allows you to manipulate files in a more

structured manner than that provided by standard byte-stream files.

File Services defines three types of files:

¶ Keyed files

¶ Sequential files

¶ Binary files

The File Services component provides APIs for manipulating files of all three

types as well as APIs for general functions such as deleting a file.

The File Services APIs for general functions are:

¶ FdsCreateDir() ð Create a directory

¶ FdsDeleteFile() ð Delete a file

¶ FdsExistFile() ð Test for the existence of a file

¶ FdsGetFileAttributes() ð Return the date and time, and the read and write
attributes of a file

¶ FdsGetFileNames() ð Return a list of the files in a directory

¶ FdsQueryFileSystemInfo() ð Query the size of a disk and the amount of
available space

¶ FdsRemoveDir() ð Remove a directory

¶ FdsRenameFile() ð Rename a file

¶ FdsRestrictFile() ð Restrict access to a file

¶ FdsSetFileAttributes() ð Set the date and time, and the read and write
attributes of a file

¶ FdsUnrestrictFile() ð Remove access restrictions for a file

The File Services APIs for keyed files are:

¶ FdsCloseKeyedFile() ð Close a keyed file or write the contents to disk

¶ FdsCreateKeyedFile() ð Create a new keyed file

¶ FdsDeleteKeyedRecord() ð Delete a record from a keyed file

¶ FdsOpenKeyedFile() ð Open an existing keyed file

¶ FdsReadKeyedRecord() ð Read a record from a keyed file

¶ FdsReleaseKeyedRecord() ð Release a lock on a record in a keyed file

¶ FdsWriteKeyedRecord() ð Write a record to a keyed file

The File Services APIs for sequential files are:

¶ FdsCloseSeqFile() ð Close a sequential file

¶ FdsFindNextSeqRecord() ð Move the file pointer to the next valid record in
a sequential file

¶ FdsOpenSeqFile() ð Open or create a sequential file

¶ FdsReadSeqRecord() ð Read a record from a sequential file

¶ FdsReturnSeqFilePos() ð Return the file-position indicator for a sequential
file

¶ FdsSeekSeqFilePos() ð Seek to a point in a sequential file

¶ FdsWriteSeqRecord() ð Append a record to a sequential file

The File Services APIs for binary files are:

¶ FdsCloseBinFile() ð Close a binary file

¶ FdsFlushBinFile() ð Flush any data buffered for a binary file

¶ FdsOpenBinFile() ð Open or create a binary file

¶ FdsQueryBinFileSize() ð Query the size of a binary file

¶ FdsReadBinFile() ð Read from a binary file

¶ FdsSeekBinFilePos() ð Move the file pointer in a binary file

¶ FdsSetBinFileLocks() ð Lock or unlock a range in a binary file

¶ FdsSetBinFileSize() ð Set the size of a binary file

¶ FdsWriteBinFile() ð Write to a binary file

Services and Operation
The File Services component uses other components of DDS to provide services.

This section describes those services and provides general operations

information.

File Distribution

The File Services component uses the Data Distribution component to

distribute file updates to other nodes. See Chapter 6. Data Distribution

for more information about file distribution.

File-Location Transparency

The File Services component provides file location transparency. File-

location transparency means that an application is not required to explicitly

indicate the location of a file to access that file; instead, an application can

use logical names and role names to indirectly specify the location of a

file. See Chapter 7. Name Services for more information about logical

names and role names. The same API is used regardless of whether the

file resides locally or remotely.

Priority

The thread priority of the calling application is preserved when

accessing remote files. This, in conjunction with the prioritization

provided by the File System Interface, ensures that disk access is

prioritized across all applications within the system.

Data Integrity

The File Services component sets the write-through bit in the (CreatFile()

on Windows for all File Services functions (except FdsOpenBinFile(),

which allows the write-through bit to be optionally specified). All data

written to such files using File Services APIs is written to disk before

returning to the application; this step protects the integrity of the data

written by the File Services component.

File Content

Although the File Services component places no restrictions on the data

placed in File Services sequential files and keyed files, these files do

contain File Services processing information. Therefore, the File

Services component should always be used for processing File Services

sequential and keyed files.

File Names

The string FDS is allowed within file names.

Operating System and File System Restrictions

The File Services component is implemented by API calls to the

underlying operating system.

These calls can manage file access with a variety of file systems, such as FAT,
FAT32, and NTFS. The file system might also vary between nodes, DASD
devices, or DASD partitions.

There might be differences in the available services, based on differences like file

naming conventions in the operating system or file system. The File Services

component does not attempt to alter or mask the properties of the operating

system or the file system.

The File Services component attempts to call the operating system. If an error
occurs because of the properties of the operating system or file system, the
File Services component returns an error.

Specifically, the File Services component does not :

¶ Attempt to detect parameters that are not valid, such as incorrect file names, that are sent to
the operating system or file system.

¶ Attempt to detect calls to the operating system or file system that are not consistent with an
API definition. For example, if an API expects a file name and a directory name is used
instead, the File Services component does not detect the error. The behavior of the call is
dependent on the operating system and file system.

¶ Circumvent any security implemented by the operating system or file system.

¶ Implement additional security.

FdsCreateDir()

Purpose
Create a new directory.

Syntax

#include <fds/file.h>

long FdsCreateDir(const char *DirName);

Parameters

DirName ð input

A string containing the name of the directory to be created. The string can

contain logical names, but must resolve to a retail path specification. See

ñFile Names and Queue Namesò for more information.

Remarks
The directory specified by DirName is created.

Error Conditions
FdsCreateDir() returns the following values:
-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example creates a new directory.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc; // Return from API call
char DirName[50] = "d:\ \mydir"; // Directory name
/ / Initialize DDS. Could use FdsInit2() instead of FdsInit()

rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsCreateDir API to create the directory "d:\mydir"
// ---
rc = FdsCreateDir(DirName);
printf("FdsCreateDir completed with return code = (%d).\n", rc);

} // end if
else
{
 // else process errors
}

FdsDeleteFile()

Purp ose
Delete a file.

Syntax

#include <fds/file.h>

long FdsDeleteFile(const char *FileName);

Parameters

FileName ð input
A string containing the name of the file to delete. The string can
contain logical names, but must resolve to a retail path specification.
See ñFile Names and Queue Names ò on page 15 for more
information.

Remarks
The file specified by FileName is deleted from disk.

Error Conditions
FdsDeleteFile() returns the following values:
-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND

-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example deletes a file.
#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsDeleteFile API to delete "d:\mydir\myfile"
// --
rc = FdsDeleteFile(FileName);
printf("FdsDeleteFile completed with return code = (%d).\n", rc);

} // end if
else
{
 // else process errors
}

FdsExistFile()

Purpose
Test for the existence of a file.

Syntax

#include <fds/file.h>

long FdsExistFile(const char *FileName);

Parameters

FileName ð input
A string containing the name of the file to locate. The string can contain
logical names, but must resolve to a retail path specification. See ñFile
Names and Queue Namesò on page 15 for more information.

Remarks
If the file specified by FileName exists, FDS_SUCCESS is returned. If it does not

exist, -200 FDSERR_FILE_NOT_FOUND is returned.

Error Conditions
FdsExistFile() returns the following values:
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example verifies that a file exists.
#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsExistFile API to see if "d:\mydir\myfile" exists
// --
rc = FdsExistFile(FileName);
printf("FdsExistFile completed with return code = (%d).\n", rc);

} // end if
else
{
// else process errors
}

FdsGetFileAttributes()

Purpose
Return the date and time of the last file modification and the read/write attribute of

a file.

Syntax

#include <fds/file.h>

long FdsGetFileAttributes(const char *FileName,

 FDS_DATE_TIME *DateTime, int *Flags);

Parameters

FileName ð input

The name of the file for which the attributes should be obtained. The

string can contain logical names, but must resolve to a retail path

specification. See άFile Names and Queue Namesέ ƻƴ ǇŀƎŜ 15 for more

information.

DateTime ð output

Pointer to the location where the date and time of the last modification

to this file is stored.

Flags ð output

Pointer to the location where the read/write attribute is stored. The

valid values are:

FDS_FILE_ATTRIBUTE_READ_ONLY

The file can be read but cannot be modified.

FDS_FILE_ATTRIBUTE_READ_WRITE

The file can be read and modified.

FDS_FILE_ATTRIBUTE_DIRECTORY

The name specified for FileName is a directory.

Remarks
Because file attributes can be changed at any time, you should always issue

this API call for the latest attribute information.

Error Conditions

FdsGetFileAttributes() returns the following values:

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_IO

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-410 FDSERR_OVERFLOW

-460 FDSERR_QUEUE_NOT_FOUND

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples
This example retrieves the file attributes for D:\MYFILE.DAT.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call
const char * FileName = "d:\ \myfile.dat"; // File Name
FDS_DATE_TIME DateTime; // Date and time attributes
int Flags = -1; // R/W and DIR indicator attribute
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsGetFileAttributes API to get the file's attributes

// --
rc = FdsGetFileAttributes(FileName,

&DateTime,
&Flags);
printf("FdsGetFileAttributes completed with

 return code = (%d) \n",
rc);

// ---
// Output the file's attributes returned from the API call
// ---
printf(" File (%s) has attributes : \n"

" ---> Flags = (%d) \n"
" ---> Last Modified on (%d/%d/%u) at (%d:%d:%d) \n",
FileName,
Flags,
DateTime.Month,
DateTime.Day,
DateTime.Year,
DateTime.Hour,
DateTime.Minute,
DateTime.Second);

} // end if
else
{
// else process errors
}

FdsGetFileNames()

Purpose
Return a list of file names contained in the specified directory.

Syntax

#include <fds/file.h>

long FdsGetFileNames(const char *DirNamePtr, void *BufferPtr, unsigned
int *NBytesPtr unsigned int Flag);

Parameters

DirNamePtrð input

Pointer to the name of the directory. The string can contain logical

names, but must resolve to a retail path specification. See ñFile Names

and Queue Namesò for more information.

BufferPtr ð output

Pointer to the buffer where the file names are stored. The file names will

be stored as a series of null-terminated strings.

If this API fails with the error -40 FDSERR_BUFFER_SIZE, the buffer

size is too small and BufferPtr points to a null string.

NBytesPtrð input/output

Input Pointer to the length of the buffer where the names are stored.

This value must be less than or equal to 60,000.

Output

When this API has completed successfully, the data in the

location pointed to by NBytesPtr is replaced by the actual length

of the data returned.

If this API fails with the error -40 FDSERR_BUFFER_SIZE,

the buffer size is too small; NBytesPtr specifies the correct

size of BufferPtr required to hold all of the names returned.

Flag ð input

Used to specify which names are returned from the specified directory.

Valid values are:

FDS_FILE_FILE_NAMES

Return file names only. This value is the default.

FDS_FILE_DIRECTORY_NAMES

Return directory names only.

Remarks
The file names are returned in BufferPtr as a series of null-terminated strings.

The file names are not fully qualified. The sort order of the returned file names is

determined by the underlying operating system. Specifying

FDS_FILE_FILE_NAMES and FDS_FILE_DIRECTORY_NAMES returns all

names contained in the directory. The special directory names ó.ô (current

directory) and ó...ô (previous directory) are never returned.

The last file name is terminated by two null characters, indicating the end of the

last file name string and the end of the list of file names.

Because files can be created, deleted, renamed, and copied within a directory

at any time, subsequent calls to FdsGetFileNames() can return different

results.

Error Conditions

 FdsGetFileNames() returns the following values:

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-190 FDSERR_FILE_NAME

-200 FDSERR_FILE_NOT_FOUND

-260 FDSERR_IO

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

-350 FDSERR_NODE_NOT_FOUND

-410 FDSERR_OVERFLOW

Examples
This example obtains the list of file names that exist in directory D:\MYDIR.
#include <stdio.h>
#include <string.h>
#include <fds/fds.h>
#include <fds/defs.h>

#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call
const char * DirNamePtr = "d:\ \mydir"; // Pointer to directory
char Buffer[500] // Buffer for File Names
unsigned int NBytes = sizeof(Buffer); // Size of buffer
unsigned int Flag = 0; // File names or directories
int entry_start = 0; // byte entry starts
int entry_length = 0; // length of current entry
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Set flag for API to get a list of file names in directory
// --
Flag = FDS_FILE_FILE_NAMES;
// --
// Call FdsGetFileNames API to get a list of files
// ---
rc = FdsGetFileNames(DirNamePtr,

Buffer,
&NBytes,
Flag);
printf("FdsGetFileNames completed with return
 code = (%d) \n",
rc);

// --
// Find and output each entry
// --
for (;;)
{

// ---
// How long is the next entry to output
// (entry_start is initially 0)
// ---
entry_length = 1 + strlen(&Buffer[entry_start]);
// If the length of the entry is less than 2, exit this loop
if (2 > entry_length)

break;
// ---
// Output the entry
// ---
printf(" --> (%s)\n", &Buffer[entry_start]);
// ---
// Increment entry_start to the beginning of the next entry
// ---
entry_start += entry_length;

}
} // end if
else
{
 // else process errors
}

FdsQueryFileSystemInfo()

Purpose
Query the size of a disk and the amount of space available on the disk.

Syntax

long FdsQueryFileSystemInfo(const char FileSystemID, unsigned long *TotalUnits,
unsigned long *AvailUnits, unsigned long
*UnitSize);

Parameters

FileSystemID ð input Pointer to the name of the disk. FileSystemID is a drive

specification, such as C:. The string can contain a role name or node ID.

TotalUnits ð output

Pointer to the location where the total units of space on the disk are

stored.

AvailUnits ð output

Pointer to the location where the total available units of space on the

disk are stored.

UnitSize ð output

Pointer to the location where the size of a unit (in bytes) is stored.

Remarks
This API returns the size of a disk and the amount of available space in units.

It also returns UnitSize, which is the size of each unit in bytes.

Error Conditions
FdsQueryFileSystemInfo() returns the following values:
-10 FDSERR_ACCESS
-90 FDSERR_DISK
-190 FDSERR_FILE_NAME
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example queries the D drive, and returns the total space and the

available space on that drive.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>

#include <fds/errno.h>
long rc; // Return from API call

char FileSystemID[3] = "d:"; // File system ID
unsigned long TotalUnits; // Total number of units
unsigned long AvailUnits; // Number of available units
unsigned long UnitSize; // Size of a unit (in bytes)

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsQueryFileSystemInfo to get the size of the D: drive
// and the amount of space that is currently available on the // disk
// --
rc = FdsQueryFileSystemInfo(FileSystemID, &TotalUnits,

&AvailUnits, &UnitSize);
printf("FdsQueryFileSystemInfo completed with

return code = (%d).\n",
rc);
// ---
// Output the disk characteristics
// ---
printf("Disk (%s) \n"

" --> Total Space = %dK \n"
" --> Available Space = %dK \n"
" --> %% Available Space = %d%% \n",
FileSystemID,
TotalUnits*UnitSize/1024,
AvailUnits*UnitSize/1024,
AvailUnits*100/TotalUnits);

} // end if
else
{

// else process errors
}

FdsRemoveDir()

Purpose
Remove a directory.

Syntax

#include <fds/file.h>

long FdsRemoveDir(const char *DirName);

Parameters

DirName ð input

A string containing the name of the directory to be deleted. The string

can contain logical names, but must resolve to a retail path specification.

See ñFile Names and Queue Namesò for more information.

Remarks
The directory specified by DirName is deleted. A directory must be empty before

it can be deleted.

Error Conditions
 FdsRemoveDir() returns the following values:

-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples

This example removes a directory from the D drive.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API call
char DirName[50] = "d:\ \mydir"; // Directory name

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{
 // --
 // Call FdsRemoveDir API to remove the directory "d:\mydir"
 // ---
 rc = FdsRemoveDir(DirName);
 printf("FdsRemoveDir completed with return code = (%d).\n", rc);
} // end if
else
{
 // else process errors
}

FdsRenameFile()

Purpose
Rename a file.

Syntax

#include <fds/file.h>

long FdsRenameFile(const char *FileName, const char *NewFileName);

Parameters

FileName ð input

A string containing the name of the file to rename. The string can

contain logical names, but must resolve to a retail path specification.

See ñFile Names and Queue Namesò for more information.

NewFileName ð input

A string containing the new name of the file. The string can contain logical

names, but must resolve to a retail path specification. See ñFile Names

and Queue Namesò for more information.

Note: The value specified for NewFileName cannot be a name that

was used for a distributed directory or a directory that contained

distributed files, even if that directory no longer exists.

Remarks
The name of the file specified by FileName is changed to NewFileName. If you

are renaming a file from one drive to another drive, the file is localized (if

distributed) regardless of the value specified by DistRenamedFile keyword.

The rename operation itself is managed by the underlying operating system. You

cannot rename a file to a different node. For example, you cannot rename a file

that exists on the primary distributor to a new name on a subordinate node.

Error Conditions

 FdsRenameFile() returns the following values:

-10 FDSERR_ACCESS
-170 FDSERR_EXISTS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples
This example renames a file.
#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char OldFileName[50] = "d:\ \mydir\ \myoldfile"; / Old File Name
char NewFileName[50] = "d:\ \mydir\ \mynewfile"; // New File Name
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsRenameFile API to rename "d:\mydir\myoldfile" to
// "d: \mydir\mynewfile"
// --
rc = FdsRenameFile(OldFileName, NewFileName);
printf("FdsRenameFile completed with return code = (%d).\n",

rc);
} // end if
else
{
 // else process errors
}

FdsRestrictFile()

Purpose
Restrict access to a file.

Syntax

#include <fds/file.h>

long FdsRestrictFile(const char *FileName);

Parameters

FileName ð input

A pointer to a string containing the name of the file for which access is to

be restricted. The string can contain a logical name, but it must resolve to

a retail path specification. See ñFile Names and Queue Namesò for more

information.

Remarks
This API closes all open instances of the specified file that were opened

through DDS APIs. It does not close open instances of the specified file that

were opened directly by calls to the operating system.

Any attempt to use an existing file handle for the specified file will return -222

FDSERR_HANDLE_FORCED_CLOSED.Any new attempts to open the file

will return -10 FDSERR_ACCESS. However, you can still rename the file

using FdsRenameFile() or delete the file using FdsDeleteFile().

Error Conditions

FdsRestrictFile() returns the following values:

-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example restricts access to a file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsRestrictFile API to restrict access to "d:\mydir\myfile"
// ---
rc = FdsRestrictFile(FileName);
printf("FdsRestrictFile completed with return code = (%d).\n", rc);

} // end if
else
{
 // else process errors
}

FdsSetFileAttributes()

Purpose
Set the date and time attribute and the read/write attribute of a file.

Syntax

#include <fds/file.h>

long FdsSetFileAttributes(const char *FileName,
FDS_DATE_TIME *DateTime,
int Flags);

Parameters

FileNameð input

Specifies the name of the file for which the attributes should be set.

The string can contain logical names, but must resolve to a retail path

specification. See ñFile Names and Queue Namesò for more

information.

DateTime ï input

 Changes the last modification date and time of the file.

Flagsð input

Specifies the read/write attribute and whether you want to change the

last modification date/time for the specified file. Also indicates whether

the attributes are being set for a file or a directory.

The valid values are:

FDS_FILE_ATTRIBUTE_READ_ONLY

Specifies that the file can be read but cannot be modified.

 FDS_FILE_ATTRIBUTE_READ_WRITE

Specifies that the file can be read and modified.

FDS_FILE_ATTRIBUTE_DATE

Specifies that the last modified date for the file should be set.

FDS_FILE_ATTRIBUTE_TIME

Specifies the last modified time for the file should be set.

FDS_FILE_ATTRIBUTE_DIRECTORY

Specifies that the attributes are being set for a directory. The

name specified by FileName must be a valid directory. If

FDS_FILE_ATTRIBUTE_DIRECTORY is not specified, the

attributes are being set for a file.

Remarks
This API sets the read/write attribute, the last modified date and time attribute,

or both attributes of the file.

The set-file-attributes operation itself is managed by the underlying

operating system.

Flags can be specified in any combination, except that

FDS_FILE_ATTRIBUTE_READ_ONLY and

FDS_FILE_ATTRIBUTE_READ_WRITE cannot both be set in the same API

call.

If FDS_FILE_ATTRIBUTE_DATE is specified, the file date is changed to the date

provided in DateTime.If FDS_FILE_ATTRIBUTE_TIME is specified, the file time is

changed to the time provided in DateTime. You may specify both

FDS_FILE_ATTRIBUTE_DATE and FDS_FILE_ATTRIBUTE_TIME in the same

API call.

Error Conditions

FdsSetFileAttributes() returns the following values:

-10 FDSERR_ACCESS
-75 FDSERR_DATE_TIME
-80 FDSERR_DIR_INDICATOR
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples

This example sets the file attributes of D:\myfile.dat to read-only and sets the last
modification date and time.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
const char * FileName = "d:\ \myfile.dat"; // File Name
FDS_DATE_TIME DateTime[1]; // Date and time attributes
int Flags = 0; / / ReadWrite attribute
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set read write attributes to READ ONLY and set date and time
// --
Flags = FDS_FILE_ATTRIBUTE_READ_ONLY |
FDS_FILE_ATTRIBUTE_DATE |
FDS_FILE_ATTRIBUTE_TIME;
// --
// Set date for the file to 9/9/1997
// --
DateTime.Year = 1997;
DateTime.Month = 9;
DateTime.Day = 9;
// --
// Set time for the file 09:19:19
// --
DateTime.Hour = 9;
DateTime.Minute = 19;
DateTime.Second = 19;
// --

// Call FdsSetFileAttributes API to set the file's attributes
// --
rc = FdsSetFileAttributes(FileName,
&DateTime,
Flags);
printf("FdsSetFileAttributes completed with return code = (%d) \n",

rc);
} // end if
else
{
 // else process errors

}

FdsUnrestrictFile()

Purpose
Remove access restrictions for a file.

Syntax

#include <fds/file.h>

long FdsUnrestrictFile(const char *FileName);

Parameters

FileName ð input

A pointer to a string containing the name of the file for which you want to

remove access restrictions. The string can contain logical names, but

must resolve to a retail path specification. See ñFile Names and Queue

Namesò

 for more information.

Remarks
This API removes access restrictions that were imposed when FdsRestrictFile()

was invoked.

Error Conditions

FdsUnrestrictFile() returns the following values:

-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example removes file access restrictions.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsUnrestrictFile API to allow access to "d:\mydir\myfile"
// ---
rc = FdsUnrestrictFile(FileName);
printf("FdsUnrestrictFile completed with return code = (%d).\n",

rc);
} // end if
else
{
// else process errors

}

Keyed-File Services
Keyed files are permanent files, stored on DASD, that can be either local or

remote to the application. Access to keyed files is based on a key field situated at

the front of each keyed-file record. All records within a keyed file must have the

same length. An example of a keyed file in the retail industry is the item price-

lookup file.

All keys in a file must be unique and cannot be 0 (zero). If a record is added with

a key field identical to an existing record, the existing record is overlaid by the

new record.

Most DASD devices write physical sectors of 512 bytes. Because DDS has no

protection from system interruptions, such as power line disturbances, a partial

keyed-file record write can occur if the block size is greater than 512 bytes and if

all sectors are not contiguous on disk. Ensure that the block size you use is 512

bytes to eliminate any possibility of this occurrence.

DDS supports keyed files created on a 4690 system. Keyed files created by DDS

can be moved to an IBM 4690 system if the block size is 512 bytes. In some

cases, file attributes used in the 4690 might not be compatible with the operating

system underlying DDS. Generally, transporting the keyed file across a network

connecting the 4690 system and DDS will correct attribute bit irregularities.

The APIs provided by File Services for keyed-file manipulation are:

 FdsCloseKeyedFile() ð Close a keyed file or write contents to disk

FdsCreateKeyedFile() ð Create a new keyed file FdsDeleteKeyedRecord()

ð Delete a record from a keyed file FdsOpenKeyedFile() ð Open an

existing keyed file FdsReadKeyedRecord() ð Read a record from a keyed

file FdsReleaseKeyedRecord() ð Release a lock on a keyed file record

FdsWriteKeyedRecord() ð Write a record to a keyed file

Capabilities and Restrictions

These capabilities and restrictions apply to the keyed-file APIs:

¶ An application can add records to or delete records from a keyed file, but an

existing keyed file cannot be extended. If you need to increase the size of a

keyed file, the keyed file must be erased and created again. You can copy

the data from the keyed file into a flat file to be reused.

¶ You can specify block sizes from 512 to 4,096. The block size must be a

multiple of 512. Block sizes larger than 512 are not protected from partial

writes.

¶ Record sizes can range from 1 to 4,092 bytes, but must be at least 4 bytes

less than the block size.

¶ You can lock keyed files at the record level using FdsReadKeyedRecord().

¶ You can lock keyed files at the file level using FdsCreateKeyedFile() or

FdsOpenKeyedFile().

¶ Individual records can be locked for update. Locking a record for update

does not block another process from locking another record in the same

block.

¶ Keyed-file services maintains statistics for each keyed file. These statistics

are maintained individually for each instance of a distributed keyed file. The

image copy of a keyed file is initialized with the statistics from the prime copy

whenever a full reconciliation of the file is performed. Refer to the IBM

Distributed Data Services/Controller Services Feature for Windows Userôs

Guide for more information about keyed-file statistics. See Chapter 6. Data

Distribution for more information about image copies, prime copies, and full

reconciliation. See ñDistributed Filesò for more information about instances.

FdsCloseKeyedFile()

Purpose
Close a keyed file or write the contents of a keyed file to disk.

Syntax

#include <fds/file.h>

long FdsCloseKeyedFile(long FileHandle, int Flag)

Parameters

FileHandleð input

The file handle obtained from FdsOpenKeyedFile()

or FdsCreateKeyedFile().

Flag ð input

A flag consisting of the following attributes:

CloseType indicates the type of close request. Valid values are:

FDS_FILE_CLOSE_TYPE_FULL

Close the file. The file handle becomes invalid and all locks on

the file are released. This is the default value.

FDS_FILE_CLOSE_TYPE_FLUSH

Write the contents of the file buffers to disk.

NullDataArea indicates whether to reset the file before closing it. The

reset of the file will fill all of the data blocks to zeroes. The valid values

are:

FDS_FILE_RESET_NO

Do not reset the file. This is the default value.

FDS_FILE_RESET_YES

Reset the data blocks of the file to zeroes before closing it. The

file header remains intact. This value is valid only in combination

with FDS_FILE_CLOSE_TYPE_FULL .

Remarks
If CloseType is FDS_FILE_CLOSE_TYPE_FULL , FileHandle becomes invalid

and all locks associated with it are released.

If CloseType is FDS_FILE_CLOSE_TYPE_FLUSH and the file is distributed with a

frequency of distribute on close, the distribution sequence is initiated as if the file

were closed, though the file is not closed. FileHandle and all locks associated with

it remain valid.

If CloseType is FDS_FILE_CLOSE_TYPE_FLUSH and the file is not distributed

or has a distribution frequency of distribute-on-update, no action is taken.

If specified, FDS_FILE_RESET_YES is effective only if all of the

following conditions apply:

¶ FDS_FILE_CLOSE_TYPE_FULL is specified. If

FDS_FILE_CLOSE_TYPE_FLUSH is specified, -210 FDSERR_FLAG is

returned.

¶ FileHandle is the only active, open instance of the keyed file.

¶ FDS_FILE_ACCESS_READ_WRITE was specified when the file was opened.

Except as indicated above, the failure to complete a reset request does not

prevent the file from being closed. FDS_SUCCESS is returned and the reset

failure is logged.

Error Conditions
FdsCloseKeyedFile() returns the following values:
-210 FDSERR_FLAG

-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND

Examples
This example flushes the contents of a keyed file to disk and then closes the file.
#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize; // Key Size
unsigned int RecordSize; // Record Size
int Flag; // Flag value
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenKeyedFile API call
// --
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_NONE;
// ---
// Open existing keyed file "d:\mydir\myfile"
// ---
rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize,

&RecordSize, Flag);
if (rc == FDS_SUCCESS)

{
// --
// Set flag for FdsCloseKeyedFile API call - to flush the file, but not
// close the file
// --
Flag = FDS_FILE_RESET_NO | FDS_FILE_CLOSE_TYPE_FLUSH;
// ---
// Call FdsCloseKeyedFile API to flush "d:\mydir\myfile"
// ---
rc = FdsCloseKeyedFile(FileHandle, Flag);
printf("FdsCloseKeyedFile completed with return code = (%d).\n",

rc);
// --
// Set flag for FdsCloseKeyedFile API call to close the file and reset
// the data blocks of the file to zeros
// --
Flag = FDS_FILE_RESET_YES | FDS_FILE_CLOSE_TYPE_FULL;
// --
// Call FdsCloseKeyedFile API to close "d:\mydir\myfile"
// --
rc = FdsCloseKeyedFile(FileHandle, Flag);
printf("FdsCloseKeyedFile completed with

return code =(%d).\n", rc);
} // end if

} // end if

else
{
 // else process errors
}

FdsCreateKeyedFile()

Purpose
Create a new keyed file.

Syntax

#include <fds/file.h>

long FdsCreateKeyedFile(long *FileHandlePtr, const char *FileName,
unsigned int KeySize,
unsigned int RecordSize,
unsigned int BlockSize,
unsigned long NumBlocks,
unsigned long RandDivisor,
unsigned int ChainThreshold,
int Flag);

Parameters

FileHandlePtr ð output

Pointer to the location where the file handle is stored. This value is

required for all other Keyed-file APIs. This is not the operating-system file

handle.

The file handle returned has read/write access to the file. The file should

be closed and reopened with FdsOpenKeyedFile() if read-only access is

required.

FileName ð input

A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specification. See ñFile Names and

Queue Namesò for more information.

KeySize ð input

The key size (in bytes) for the file. This value must be greater than

zero, and less than or equal to RecordSize.

RecordSize ð input

The record size (in bytes) for the file. This value must be greater than

or equal to KeySize and less than or equal to BlockSize minus 4.

BlockSize ð input

The block size (in bytes) for the file. This value must be a multiple of 512,

from 512 to 4,096. It must also be greater than or equal to RecordSize

plus

4.

NumBlocks ð input

The number of blocks in the file. This value must be greater than or

equal toRandDivisor.

This value should be large enough for the maximum number of records

that will be added to the keyed file plus 20 percent for free space.

Calculate this value by dividing the maximum number of records by the

number of records per block, and then adding 20 percent.

The smallest allowed number of blocks is 1.

RandDivisor ð input

The randomizing divisor for the file. This value must be less than or

equal toNumBlocks. If this value is 0 (zero), DDS calculates a default

value.

Prime numbers are effective randomizing divisors. For example, you

might choose the largest prime number that is less than or equal to the

total number of blocks in the keyed file.

ChainThreshold ð input

The chaining threshold for the file. This value must be less than

NumBlocks. If a new record is added to a keyed file that causes a chain

greater than this value to be created in the file, an informational message

is logged to indicate this event. Specifying 0 (zero) for this value

suppresses the logging of these messages.

Flag ð input

A flag consisting of the following attributes:

FileExistAction indicates the action to take if FileName already exists.

Valid values are:

FDS_FILE_EXIST_FAIL

The API fails. This is the default value.

FDS_FILE_EXIST_REPLACE

 Replace the existing file.

FileLock indicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE

Request exclusive access to the file. No other process can

access the file for reading or writing.

FDS_FILE_LOCK_SHARED

Request shared access to the file. No other process can access

the file for writing, but other processes can access the file for

reading.

FDS_FILE_LOCK_NONE

Request no lock for the file. Other processes can access the file

for reading and writing. This is the default value.

HashingAlgorithm indicates the hashing algorithm to be used. See the

IBM Distributed Data Services/Controller Services Feature for Windows

Userôs Guide for more information about hashing algorithms. Valid values

are:

FDS_FILE_HASH_POLYNOMIAL

Polynomial algorithm. This is the default value.

FDS_FILE_HASH_XOR

XOR rotation algorithm.

FDS_FILE_HASH_FOLDING

Simple folding algorithm.

Remarks
A new keyed file with the name you specified for the FileName parameter is

created. The file size is determined by the values of BlockSize and

NumBlocks.

If a file with the same name already exists, the existing file is replaced or -

170 FDSERR_EXISTS is returned, depending on the value of

FileExistAction.

The data blocks in the file are initialized to zeros. This process can take a long

time for large files.

Error Conditions

FdsCreateKeyedFile() returns the following values:
-10 FDSERR_ACCESS
-30 FDSERR_BLOCK_SIZE
-50 FDSERR_CHAIN_THRESH
-100 FDSERR_DISK_FULL
-170 FDSERR_EXISTS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-260 FDSERR_IO
-290 FDSERR_KEY_SIZE
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-390 FDSERR_NUM_BLOCKS
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-480 FDSERR_RAND_DIV
-490 FDSERR_REC_SIZE
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example creates a keyed file.

#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>

#include <fds/defs.h>
#include <fds/errno.h>

long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize = 7; // Key Size
unsigned int RecordSize = 50; // Record Size
unsigned int BlockSize = 512; // Block Size
unsigned long NumBlocks = 1000; // Number of Blocks
unsigned long RandDivisor = 0; // Randomizing Divisor
unsigned long ChainThreshold = 4; // Chaining Threshold
int Flag; // Flag value

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set flag for FdsCreateKeyedFile API call
// ---Flag = FDS_FILE_EXIST_REPLACE |

FDS_FILE_LOCK_EXCLUSIVE |
FDS_FILE_HASH_POLYNOMIAL;

// ---

// Call FdsCreateKeyedFile API to create keyed file "d:\mydir\myfile".

// ---

printf("FdsCreateKeyedFile completed with return code =
(%d).\n", rc);

} // end if
else
{ // else process errors }

FdsDeleteKeyedRecord()

Purpose
Delete a record from a keyed file.

Syntax

#include <fds/file.h>

long FdsDeleteKeyedRecord(long FileHandle, void *KeyPtr, unsigned int KeySize);

Parameters

FileHandle ð input

The file handle obtained from FdsOpenKeyedFile() or

FdsCreateKeyedFile().

KeyPtr ð input

A pointer to the key of the record to delete. The specified key must not be

null (must not contain all zeros).

KeySize ðinput The size of the key pointed to by KeyPtr. This value must equal

the key size set by FdsCreateKeyedFile() or obtained from

FdsOpenKeyedFile().

Remarks
The record containing the key specified by KeyPtr is deleted from the file. The -10

FDSERR_ACCESS error code is returned if the record is locked.

Error Conditions
FdsDeleteKeyedRecord() returns the following values:

-10 FDSERR_ACCESS
-70 FDSERR_CORRUPT
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-270 FDSERR_KEY
-280 FDSERR_KEY_NOT_FOUND
-290 FDSERR_KEY_SIZE
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-530 FDSERR_ROLE_CHANGE

Examples
This example removes a record from a keyed file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize; // Key Size
unsigned int RecordSize; // Record Size
int Flag; // Flag value
void* pRecord; // Pointer to Record
char Buffer[100] = "Record1"; // Record to delete
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenKeyedFile API call
// --
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
// ---
// Open existing keyed file "d:\mydir\myfile"
// ---

rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize,
&RecordSize, Flag);

if (rc == FDS_SUCCESS)
{
// ---
// Store key of record to delete in pRecord
// ---
pRecord = (void *) Buffer;
// ---
// Delete record that has key = "Record1"
// ---
rc = FdsDeleteKeyedRecord(FileHandle, pRecord, KeySize);
printf("FdsDeleteKeyedRecord completed with return code = (%d).\n", rc);

} // end if
} // end if
else
{
// else process errors
}

FdsOpenKeyedFile()

Purpose
Open an existing keyed file.

Syntax

#include <fds/file.h>

long FdsOpenKeyedFile(long *FileHandlePtr, const char *FileName, unsigned int *KeySizePtr,
unsigned int *RecordSizePtr, int Flag);

Parameters

FileHandlePtr ð output

Pointer to the location where the file handle is stored. This value is

required for all other Keyed-file APIs. This is not the operating-system file

handle.

FileName ð input

A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specification. See ñFile Names and

Queue Namesò for more information.

KeySizePtr ð output

Pointer to the location where the key size (in bytes) for the file is stored.

RecordSizePtr ð output

Pointer to the location where the record size (in bytes) for the file is stored.

Flag ð input

A flag consisting of the following attributes:

FileAccess indicates whether write access to the file is requested.

Valid values are:

FDS_FILE_ACCESS_READ_ONLY

Request read-only access to the file. This is the default value.

FDS_FILE_ACCESS_READ_WRITE

Request read and write access to the file.

FileLock indicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE

Request exclusive access to the file. No other process can

access the file for reading or writing.

FDS_FILE_LOCK_SHARED

Request shared access to the file. No other process can access

the file for writing, but other processes can access the file for

reading.

FDS_FILE_LOCK_NONE

Request no lock for the file. Other processes can access the file

for reading and writing. This is the default value.

Remarks
The file specified by FileName is opened with the attributes specified by Flag.

The system attempts to verify that the file is a valid keyed file.

Error Conditions

This example removes a record from a keyed file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize; // Key Size
unsigned int RecordSize; // Record Size
int Flag; // Flag value
void* pRecord; // Pointer to Record
char Buffer[100] = "Record1"; // Record to delete
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenKeyedFile API call
// --
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
// ---
// Open existing keyed file "d:\mydir\myfile"

// ---
rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize, &RecordSize, Flag);
if (rc == FDS_SUCCESS)
{

// ---
// Store key of record to delete in pRecord
// --
pRecord = (void *) Buffer;
// --
// Delete record that has key = "Record1"
// --
rc = FdsDeleteKeyedRecord(FileHandle, pRecord, KeySize);
printf("FdsDeleteKeyedRecord completed with return code = (%d).\n", rc);

 } // end if
} // end if
else
{
 // else process errors
}

FdsReadKeyedRecord()

Purpose
Read a record from a keyed file.

Syntax

#include <fds/file.h>

long FdsReadKeyedRecord(long FileHandle, void *BufferPtr, unsigned int KeySize, unsigned int
*RecordSizePtr, int Flag);

Parameters

FileHandle ð input

The file handle obtained from FdsOpenKeyedFile()

or FdsCreateKeyedFile().

BufferPtr ð input/output

Input A pointer to the key of the record to read. The specified key

must not be null (must not contain all zeros).

Output

A pointer to the record containing a matching key.

KeySize ð input The size (in bytes) of the key pointed to by BufferPtr. This value

must equal the key size set by FdsCreateKeyedFile() or obtained from

FdsOpenKeyedFile().

RecordSizePtr ð input/output

Input A pointer to the maximum size (in bytes) of the record to read.

This value must be greater than or equal to the record size set by

FdsCreateKeyedFile() or obtained from FdsOpenKeyedFile(). This

value must also be less than or equal to the size of the allocated

space pointed to by BufferPtr.

Output

If the call succeeds, a pointer to the size (in bytes) of the record

that was read. If the call fails and the error code is -490

FDSERR_REC_SIZE,a pointer to the size (in bytes) of the record

that could not be read. The value will be equal to the record size

set by FdsCreateKeyedFile() or obtained from

FdsOpenKeyedFile() in both of these cases.

If the call fails and the error code is not -490

FDSERR_REC_SIZE, the output value is undefined.

Flag ð input

A flag consisting of the following attribute:

RecordLock indicates whether to lock the record. Valid values are:

FDS_FILE_RECORD_LOCK_NO

Do not lock the record. This is the default value.

FDS_FILE_RECORD_LOCK_YES

Lock the record. Other processes can continue to read the

record, but cannot update it.

Remarks
If RecordLock is FDS_FILE_RECORD_LOCK_YES , the record is locked until

an FdsWriteKeyedRecord() request with RecordUnlock equal to

FDS_FILE_RECORD_UNLOCK_YES is issued, or until the keyed record is

released via an FdsReleaseKeyedRecord() request. A record can be read by

other processes while it is locked, but it cannot be updated.

Error Conditions

FdsReadKeyedRecord() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-70 FDSERR_CORRUPT
-210 FDSERR_FLAG
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-270 FDSERR_KEY
-280 FDSERR_KEY_NOT_FOUND
-290 FDSERR_KEY_SIZE
-350 FDSERR_NODE_NOT_FOUND
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE
-560 FDSERR_SEQUENCE

Examples

This example removes a record from a keyed file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize; // Key Size
unsigned int RecordSize; // Record Size
int Flag; // Flag value
void* pRecord; // Pointer to Record
char Buffer[100] = "Record1"; // Record to delete
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenKeyedFile API call
// --
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
// ---
// Open existing keyed file "d:\mydir\myfile"
// ---
rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize,

&RecordSize, Flag);
if (rc == FDS_SUCCESS)
{

// ---
// Store key of record to delete in pRecord
// ---
pRecord = (void *) Buffer;
// ---
// Delete record that has key = "Record1"
// ---
rc = FdsDeleteKeyedRecord(FileHandle, pRecord, KeySize);
printf("FdsDeleteKeyedRecord completed with return

code = (%d).\n", rc);
} // end if

} // end if
else
{
// else process errors

}

FdsReleaseKeyedRecord()

Purpose
Release a lock on a record in a keyed file.

Syntax

#include <fds/file.h>

long FdsReleaseKeyedRecord(long FileHandle, void *KeyPtr, unsigned int KeySize);

Parameters

FileHandle ð input

The file handle obtained from FdsOpenKeyedFile() or

FdsCreateKeyedFile().

KeyPtr ð input

A pointer to the key of the record to release. The specified key must not be

null (must not contain all zeros).

KeySize ð input The size of the key pointed to by KeyPtr. This value must equal

the key size set by FdsCreateKeyedFile() or obtained from

FdsOpenKeyedFile().

Remarks
The lock on the record containing the key specified by KeyPtr is released. The lock

must have been previously established by FdsReadKeyedRecord().

Error Conditions
FdsWriteKeyedRecord() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-70 FDSERR_CORRUPT
-180 FDSERR_FILE_FULL
-210 FDSERR_FLAG
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-270 FDSERR_KEY
-290 FDSERR_KEY_SIZE
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE
-560 FDSERR_SEQUENCE

Examples
This example releases a locked record.
#include <stdio.h>
#include <fds/file.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize; // Key Size
unsigned int RecordSize; // Record Size
int Flag; // Flag value

void* pRecord; // Pointer to Record
char Buffer[100] = "Record1"; // Record to release
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenKeyedFile API call
// --
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_EXCLUSIVE;
// ---
// Open existing keyed file "d:\mydir\myfile"
// ---
rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize,

&RecordSize, Flag);
if (rc == FDS_SUCCESS)
{

// ---
// Set flag for FdsReadKeyedRecord API call to lock the record
// ---
Flag = FDS_FILE_RECORD_LOCK_YES;
// ---
// Store key of record to lock in pRecord
// ---
pRecord = (void *) Buffer;
// ---
// Read record that has key = "Record1"
// ---
rc = FdsReadKeyedRecord(FileHandle, // File Handle from Open
pRecord, // Pointer to Record
KeySize, // Key size
&RecordSize, // Record size
Flag); // Flag value
if (rc != FDS_SUCCESS)
{
printf("FdsReadKeyedRecord failed (%d).\n", rc);
return(-1);
}
// ---
// Store key of record to unlock in pRecord
// ---
pRecord = (void *) Buffer;
// --
// Unlock record that has key = "Record1"
// --
rc = FdsReleaseKeyedRecord(FileHandle, pRecord, KeySize);
printf("FdsReleaseKeyedRecord completed with return code = (%d).\n", rc);

} // end if
} // end if
else
{
// else process errors
}

FdsWriteKeyedRecord()

Purpose
Write a record to a keyed file.

Syntax

#include <fds/file.h>

long FdsWriteKeyedRecord(long FileHandle, void *RecordPtr,
unsigned int KeySize,
unsigned int RecordSize,
int Flag);

Parameters

FileHandle ð input

The file handle obtained from FdsOpenKeyedFile()

or FdsCreateKeyedFile().

RecordPtr ð input

A pointer to the record to write. The first KeySize bytes of the record must

contain a non-null key (must not consist of all zeros).

KeySize ð input

The size (in bytes) of the key at the front of the record pointed to by

RecordPtr. This value must equal the key size set by

FdsCreateKeyedFile() or obtained from FdsOpenKeyedFile().

RecordSize ð input

The size (in bytes) of the record pointed to by RecordPtr. This value

must equal the record size set by FdsCreateKeyedFile() or obtained

from FdsOpenKeyedFile().

Flag ð input

A flag consisting of the following attribute:

RecordUnlock indicates whether to unlock the record after the write.

Valid values are:

FDS_FILE_RECORD_UNLOCK_NO

Do not unlock the record. This is the default value.

FDS_FILE_RECORD_UNLOCK_YES

Unlock the record after the write. A lock on the record must

have been previously established using

FdsReadKeyedRecord().

Remarks
If the record specified by RecordPtr contains a key that already exists in a record

in the file, the record in the file is replaced with the new record. If the existing

record is locked, FDS_FILE_RECORD_UNLOCK_YES must be specified. If the

existing record is not locked, you do not have to specify a value

(FDS_FILE_RECORD_UNLOCK_NO is the default).

If the record specified by RecordPtr contains a key that does not already exist

in a record in the file, the new record is added to the file.

Error Conditions
FdsWriteKeyedRecord() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-70 FDSERR_CORRUPT
-180 FDSERR_FILE_FULL
-210 FDSERR_FLAG
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-270 FDSERR_KEY
-290 FDSERR_KEY_SIZE
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE
-560 FDSERR_SEQUENCE

Examples

This example updates a record in a keyed file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API Call
char FileName[50] = "d:\ \mydir\ \myfile"; // File name
long FileHandle; // Open Keyed File Handle
unsigned int KeySize; // Key Size
unsigned int RecordSize; // Record Size
int Flag; // Flag value
void* pRecord; // Pointer to Record
char Buffer[100] = "Record1"; // Key of record to write
char Buffer2[100] = "Record1 New Record 1 data"; // New Record
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenKeyedFile API call
// --
Flag = FDS_FILE_ACCESS_READ_WRITE | FDS_FILE_LOCK_SHARED;
// --
// Open existing keyed file "d:\mydir\myfile"
// --
rc = FdsOpenKeyedFile(&FileHandle, FileName, &KeySize, &RecordSize, Flag);
if (rc == FDS_SUCCESS)
{
// ---
// Set flag for FdsReadKeyedRecord API call to lock the record
// ---
Flag = FDS_FILE_RECORD_LOCK_YES;
// ---

// Store key of record to read in pRecord
// ---
pRecord = (void *) Buffer;
// ---
// Read record that has key = "Record1"
// ---
rc = FdsReadKeyedRecord(FileHandle, // File Handle from Open
pRecord, // Pointer to Record
KeySize, // Key size
&RecordSize, // Record size
Flag); // Flag value
if (rc != FDS_SUCCESS)
{

printf("FdsReadKeyedRecord failed (%d).\n", rc);
return(-1);

}
// ---
// Call FdsWriteKeyedRecord to write "Record1" back to the file after
// changing the data in the record. The read was done with lock so
// the write must be done with unlock.
// ---
Flag = FDS_FILE_RECORD_UNLOCK_YES;
// ---
// Store the new record in pRecord
// ---
pRecord = (void *) Buffer2;
// ---
// Call FdsWriteKeyedRecord API
// ---
rc = FdsWriteKeyedRecord(FileHandle, pRecord, KeySize, RecordSize, Flag);
printf("FdsWriteKeyedRecord completed with return code = (%d).\n", rc);

} // end if
} // end if
else
{
// else process errors

}

Sequential File Services
Sequential files are composed of a sequence of records of variable lengths.

Records are read in order from the beginning of the file to the end. New records

are added to the end of the file. An existing record cannot be deleted, replaced, or

removed from the file.

Sequential files are stored on DASD as contiguous data with self-defining

records. Each record consists of a 4-byte record header followed by user data.

The first 2 bytes of the record header contain a delimiter that is used only in

error-recovery situations. The hex value of the delimiter is hex BEEF. The

second 2 bytes of the record header contain the length of the subsequent user

data. This structure is summarized in the following table:

 Table 1. Sequential-File, Record-Header Format

Description Size Notes

Delimiter 2 bytes Hexidecimal value is hex BEEF.

Length of user
data

2 bytes Range is from 1 to 49 152.

User data User-defined (must be
within above range)

No content restrictions.

The APIs provided by File Services for sequential file manipulation are:

 FdsCloseSeqFile() ð Close a sequential file

FdsFindNextSeqRecord() ð Move the file pointer to the next valid record in a

sequential file

FdsOpenSeqFile() ð Open or create a sequential file

FdsReadSeqRecord() ð Read a record from a sequential file

FdsReturnSeqFilePos() ð Return the file position indicator for a sequential file

FdsSeekSeqFilePos() ð Seek to a point in a sequential file

FdsWriteSeqRecord() ð Append a record to a sequential file

FdsCloseSeqFile()

Purpose
Close a sequential file.

Syntax

#include <fds/file.h>

long FdsCloseSeqFile(long FileHandle);

Parameters

FileHandle ð input
The file handle obtained from FdsOpenSeqFile().

Remarks
FileHandle becomes invalid and any locks on the file are released.

Error Conditions
FdsCloseSeqFile() returns the following values:
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED

Examples
This example closes a sequential file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>

#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to open
int Flag; // Flag value
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Flag for FdsOpenSeqFile API call
// --
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE;
// --
// Open "d:\ itemrec.dat"
// --
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
// I f Open was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsCloseSeqFile API to close "d:\ itemrec.dat"
// ---
rc = FdsCloseSeqFile(FileHandle);
printf("FdsCloseSeqFile completed with return code = (%d) \n", rc);

} // end if
} // end if
else
{
// else process errors
}

FdsFindNextSeqRecord()

Purpose
Move the file pointer to the next valid record in a sequential file

Synta x

#include <fds/file.h>

long FdsFindNextSeqRecord(long FileHandle);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenSeqFile().

Remarks

The file pointer is advanced to the next valid record in the file, beginning at the

current position of the file pointer. The file pointer is advanced, even if it is located

on a valid record when the call is made, unless a valid record cannot be found.

Use this API for error recovery when the File Services component or the caller

detects a damaged record in a file.

Error Conditions
FdsFindNextSeqRecord() returns the following values:
-10 FDSERR_ACCESS
-160 FDSERR_EOF
-220 FDSERR_HANDLE
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE

Examples
This example moves the file pointer to the next valid record in a sequential file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to create
int Flag; // Flag value
char Record[500] = ""; // Record to read
unsigned int RecordSize = sizeof(Record); // Size of Record
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Flag for FdsOpenSeqFile API call
// --
Flag = (unsigned int) FDS_FILE_EXIST_OPEN |
(unsigned int) FDS_FILE_ACCESS_READ_ONLY |
 (unsigned int) FDS_FILE_LOCK_SHARED;
// --
// Open "d:\ itemrec.dat"
// --
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsFindNextSeqRecord API to advance the position of the
// file pointer in the file to the next record
//
// (e.g. if the file pointer currently points to the first record
// in the file, after calling the FdsFindNextSeqRecord API, the
// file pointer will point to the second record in the file)

// ---
rc = FdsFindNextSeqRecord(FileHandle);
printf("FdsFindNextSeqRecord completed with return code = (%d).\n", rc);
if (rc == FDS_SUCCESS)
{
// Read the second record in the file
rc = FdsReadSeqRecord(FileHandle, (void*) Record, &RecordSize);

} // end if
} // end if

} // end if
else
{
// else process errors

}

FdsOpenSeqFile()

Purpose
Open or create a sequential file.

Syntax

#include <fds/file.h>

long FdsOpenSeqFile(long *FileHandlePtr, const char *FileName, int Flag);

Parameters

FileHandlePtr ð output

Pointer to the location where the file handle is stored. This value is

required for all the other Sequential-file APIs. This handle is not the

operating system file handle.

FileName ð input

A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specification. See ñFile Names and

Queue Namesò for more information.

Flag ð input

A flag consisting of the following attributes:

FileExistAction indicates the action to take if FileName already exists.

Valid values are:

FDS_FILE_EXIST_OPEN

Open the existing file. This is the default value.

FDS_FILE_EXIST_REPLACE
Replace the existing file. FDS_FILE_ACCESS_READ_ WRITE
must also be specified if this value is specified.

FileAccess indicates whether write access to the file is requested.

Valid values are:

FDS_FILE_ACCESS_READ_ONLY

Request read-only access to the file. This is the default value.

FDS_FILE_ACCESS_READ_WRITE

Request read and write access to the file.

FileLock indicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE

Request exclusive access to the file. No other process can

access the file for reading or writing.

FDS_FILE_LOCK_SHARED

Request shared access to the file. No other process can access

the file for writing, but other processes can access the file for

reading.

FDS_FILE_LOCK_NONE
Request no lock for the file. Other processes can access the
file for reading and writing. This is the default value.

Remarks
A file named FileName is opened with the attributes specified by Flag. If the file

exists, it is either opened or replaced, depending on the value of FileExistAction.If

the file does not exist and FDS_FILE_ACCESS_READ_WRITE is specified, a

new file is created. Otherwise, an error is returned if the file does not exist.

File Services does not attempt to validate the contents of an existing file if

an existing file is opened.

The file pointer is placed at the first record in the file.

File Services does not implement access control for file locking and sharing.

These features are implemented by the operating system and file system based

on the Flag parameter.

Error Conditions
FdsOpenSeqFile() returns the following values:
-10 FDSERR_ACCESS
-70 FDSERR_CORRUPT
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW
-460 FDSERR_QUEUE_NOT_FOUND
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example opens a sequential file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to create
int Flag; // Flag value
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set flag for FdsOpenSeqFile API call
// --
Flag = FDS_FILE_EXIST_REPLACE |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_SHARED;
// ---
// Call FdsOpenSeqFile API to create/replace "d:\ itemrec.dat"
// ---
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
printf("FdsOpenSeqFile completed with return code = (%d) \n", rc);

} // end if
else
{
// else process errors
}

FdsReadSeqRecord()

Purpose
Read a record from a sequential file.

Syntax

#include <fds/file.h>

long FdsReadSeqRecord(long FileHandle,
void *BufferPtr,

 unsigned int *BufferSizePtr);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenSeqFile().

BufferPtr ð output
A pointer to the location where the record that was read is stored.

BufferSizePtr ð input/output

Input A pointer to the maximum size (in bytes) of the record to read.
 This value must be less than or equal to the size of the allocated
 space pointed to by BufferPtr.

Output If the call succeeds, a pointer to the size (in bytes) of the record

read. The output value is less than or equal to the input value in this
case.

If the call fails and the error code is -40 FDSERR_BUFFER_SIZE, a
pointer to the size (in bytes) of the record that could not be read. The
output value is greater than the input value in this case.

If the call fails and the error code is not -40 FDSERR_BUFFER_SIZE,
the output value is undefined.

Remarks
The record beginning at the current file pointer is read. File Services does

not adjust the file pointer before processing the request.

If the input value of BufferSize is at least as large as the size of the user-data

portion of the record, the user data is placed in the location specified by

BufferPtr, and the output value of BufferSize is the actual size of the user data.

See ñSequential File Servicesò for more information about the size of the user-

data portion of the record.

If the input value of BufferSize is smaller than the size of the user data, -40

FDSERR_BUFFER_SIZE is returned, and the output value of BufferSize is

the actual size (in bytes) of the user data. The contents of the location

specified by BufferPtr are undefined in this case. You can immediately

attempt to read the record again, indicating a larger value for BufferSize.

If the call succeeds, FDS_SUCCESS is returned and the file pointer is advanced

to the next record.

Error Conditions
FdsReadSeqRecord() returns the following values:

-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-70 FDSERR_CORRUPT

-160 FDSERR_EOF

-220 FDSERR_HANDLE

-222 FDSERR_HANDLE_FORCED_CLOSED

-260 FDSERR_IO

-350 FDSERR_NODE_NOT_FOUND

-530 FDSERR_ROLE_CHANGE

Examples
This example reads a record in a sequential file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to open
int Flag; // Flag value
char Record[500] = ""; // Record to read
unsigned int RecordSize = sizeof(Record); // Size of Record
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Flag for FdsOpenSeqFile API call
// --
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE;
// --
// Open "d:\ itemrec.dat"
// --
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsReadSeqRecord API to read the first record in the file
// ---
rc = FdsReadSeqRecord(FileHandle, (void*) Record, &RecordSize);
printf("FdsReadSeqRecord completed with return code = (%d) \n"

" ---> Record read = (%s) \n", rc,Record);
} // end if

} // end if
else
{
 // else process errors
}

FdsReturnSeqFilePos()

Purpose

Return the file position indicator for a sequential file.

Syntax

#include <fds/file.h>

long FdsReturnSeqFilePos(long FileHandle, unsigned long *PositionPtr);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenSeqFile().

PositionPtr ð output
A pointer to the location where the file position indicator will be stored.

Remarks
The current position of the file pointer is returned. This value can be used later, via

a call to FdsSeekSeqFilePos(), to return the file pointer to its current position.

Error Conditions
FdsReturnSeqFilePos() returns the following values:
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE

Examples

This example saves the current file position of a sequential file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to open
int Flag; // Flag value
unsigned long Position = 0; // File position
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Flag for FdsOpenSeqFile API call
// --
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE;
// --
// Open "d:\ itemrec.dat"
// --
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);

// If Open was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsReturnSeqFilePos API to save the current position
// of the file pointer.
//
// This call is used in conjunction with the FdsSeekSeqFilePos,
// which will return the file pointer to the saved position.
// (See FdsSeekSeqFilePos() for more information.)
// ---
rc = FdsReturnSeqFilePos(FileHandle, &Position);
printf("FdsReturnSeqFilePos completed with return code = (%d).\n", rc);

} // end if
} // end if
else
{
// else process errors
}

FdsSeekSeqFilePos()

Purpose
Seek to a previously determined point in a sequential file.

Syntax

#include <fds/file.h>

long FdsSeekSeqFilePos(long FileHandle, unsigned long Position);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenSeqFile().

Position ð input

The file position indicator obtained from FdsReturnSeqFilePos(). Position

= ï1 positions the pointer at the end of the file.

Context
The file pointer is moved to the location specified by Position. This value must

have been previously obtained from a call to FdsReturnSeqFilePos() to ensure

correct alignment of the file pointer.

Remarks
FdsSeekSeqFilePos() returns the following values:
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE

Examples

This example seeks to a previously saved position in a sequential file.
#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to open
int Flag; // Flag value
char Record[500] = ""; // Record to read
unsigned int RecordSize = sizeof(Record); // Size of Record
unsigned long Position = 0; // File position
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Flag for FdsOpenSeqFile API call
// --
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_EXCLUSIVE;
// --
// Open "d:\ itemrec.dat"
// --
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// --
// Save the current file position
// --
rc = FdsReturnSeqFilePos(FileHandle, &Position);
// ---
// Call FdsSeekSeqFilePos API to go to the position saved as a
// result of calling FdsReturnSeqFilePos.
//
// (see FdsReturnSeqFilePos for more information)
// ---
rc = FdsSeekSeqFilePos(FileHandle, Position);
printf("FdsSeekSeqFilePos completed with return code = (%d).\n", rc);
if (rc == FDS_SUCCESS)
{

// --
// Read the record in the file
// --
rc = FdsReadSeqRecord(FileHandle, (void*) Record,

&RecordSize);
printf(" Record read = (%s) \n", Record);

} // end if
} // end if

} // end if
else

{
// else process errors

}

FdsWriteSeqRecord()

Purpose
Append a record to a sequential file.

Syntax

#include <fds/file.h>

long FdsWriteSeqRecord(long FileHandle, const void *BufferPtr, unsigned int BufferSize);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenSeqFile().

BufferPtr ð input
A pointer to the location at which the data to write is stored.

BufferSize ð input

The size (in bytes) of the record to write. If the file is distributed in a

broadcast domain, this value must be less than or equal to 4,096. If the

file is distributed in the mirrored domain or if the file is not distributed, this

value must be less than or equal to 49,152. In either case, this value must

also be less than or equal to the size (in bytes) of the allocated space

pointed to by BufferPtr.

Remarks
A record is appended to the file. The file pointer is advanced to the end of the

file before the write operation. The first BufferSize bytes of the data specified by

BufferPtr constitute the user-data portion of the record. The value for BufferSize

must be within the range specified for the user-data portion of the record. See

ñSequential File Servicesò for more information about the size of the user-data

portion of the record.

If the call succeeds, FDS_SUCCESS is returned, the entire record is appended to

the file, and the file pointer remains at the end of the file. If the call fails, the portion

of the record that is written, as well as the location of the file pointer, will vary with

the type of error.

Error Conditions
FdsWriteSeqRecord() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-70 FDSERR_CORRUPT
-100 FDSERR_DISK_FULL
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED

-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE

Examples

This example writes a record in a sequential file.

#include <stdio.h>
#include <string.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \ itemrec.dat"; // Name of file to create
int Flag; // Flag value
char Record[500]; // Record to read
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Flag for FdsOpenSeqFile API call
// --
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_EXCLUSIVE;
// --
// Open "d:\ itemrec.dat"
// --
rc = FdsOpenSeqFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// --
// Set record to write to "d:\ itemrec.dat"
// --
strcpy(Record, "Write this new record to the file");
// ---
// Call FdsWriteSeqRecord API to write record to "d:\ itemrec.dat"
// - record will be added as the last record in the file
// ---
rc = FdsWriteSeqRecord(FileHandle, (void*) Record, sizeof(Record));
printf("FdsWriteSeqRecord completed with return code = (%d).\n", rc);

} // end if
} // end if
else
{
// else process errors

}

Binary File Services
Binary files are byte-stream files. In byte-stream files, data can be read from or
written to any position within the file. The data within the file has no
predetermined structure, and the API calls used to manipulate the data do not
translate any control characters. In addition to read and write operations, the
file-pointer location can be moved, ranges of the file can be locked in either a
read-shared or exclusive mode, and file buffering and caching can be
controlled.

Binary files provide more flexibility for the application to manage the data in a file,
but they require more complexity in the application.

The APIs provided by File Services for binary file manipulation are:

¶ FdsCloseBinFile() ð Close a binary file

¶ FdsFlushBinFile() ð Flush any data buffered for a binary file

¶ FdsOpenBinFile() ð Open or create a binary file

¶ FdsReadBinFile() ð Read from a binary file

¶ FdsSeekBinFilePos() ð Move the file pointer in a binary file

¶ FdsSetBinFileLocks() ð Lock or unlock a range in a binary file

¶ FdsWriteBinFile() ð Write to a binary file

FdsCloseBinFile()

Purp ose
Close a binary file.

Syntax

#include <fds/file.h>

long FdsCloseBinFile(long FileHandle);

Parameters

FileHandle ð input
The file handle obtained from FdsOpenBinFile().

Remarks
FileHandle becomes invalid, and any file pointers or locks on the file are released.

Error Conditions
FdsCloseBinFile() returns the following values:

-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND

Examples

This example closes a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to close
int Flag; // Flag value
// I nitialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{
// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN
FDS_FILE_ACCESS_READ_ONLY
FDS_FILE_LOCK_NONE;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsCloseBinFile API to close "d:\binary.dat"
// --
rc = FdsCloseBinFile(FileHandle);
printf("FdsCloseBinFile completed with return code = (%d) \n", rc);

} // end if
} // end if
else
{
 // else process errors
}

FdsFlushBinFile()

Purpose
Force all updates to the binary file to be written to disk.

Syntax

#include <fds/file.h>

long FdsFlushBinFile(long FileHandle);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenBinFile().

Remarks
All updates to the binary file that can be cached in buffers are written to disk.

Error Conditions
FdsFlushBinFile() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE

Examples
This example will flush any updates that have been cached in buffers, so that
they will be written to the disk.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; / / Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to flush
int Flag; // Flag value
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If ini tialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_YES;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsFlushBinFile API to flush the file to disk
// --
rc = FdsFlushBinFile(FileHandle);
printf("FdsFlushBinFile completed with return code = (%d) \n", rc);

} // end if
} // end if
else
{

// else process errors
}

FdsOpenBinFile()

Purpose
Open or create a binary file.

Syntax

#include <fds/file.h>

long FdsOpenBinFile(long *FileHandlePtr, const char *FileName,
 int Flag);

Parameters

FileHandlePtr ð output

Pointer to the location where the file handle will be stored. This value

is required for all the other binary-file APIs. This file handle is not the

operating-system file handle.

FileName ð input

A string specifying the file to open. The string can contain logical names,

but must resolve to a retail path specification. See ñFile Names and

Queue Namesò for more information.

Flag ð input

A flag consisting of the following attributes:

FileExistAction indicates the action to take if FileName already exists.

Valid values are:

FDS_FILE_EXIST_OPEN

Open the existing file. This is the default value

FDS_FILE_EXIST_REPLACE

Replace the existing file. FDS_FILE_ACCESS_READ_WRITE

must

also be specified if this value is specified.

FileNewAction indicates the action to take if FileName does not

already exist. Valid values are:

FDS_FILE_NEW_CREATE

 Create the file. This is the default.

FDS_FILE_NEW_FAIL

The API fails if the file does not exist and an error is returned.

FileAccess indicates whether write access to the file is requested.

Valid values are:

FDS_FILE_ACCESS_READ_ONLY

Request only read access to the file. This is the default value.

FDS_FILE_ACCESS_READ_WRITE

 Request write and read access to the file.

FileLock indicates the type of lock requested for the file. Valid values are:

FDS_FILE_LOCK_EXCLUSIVE

Request exclusive access to the file. No other file handle can

access the file for reading or writing.

FDS_FILE_LOCK_SHARED

Request shared access to the file. No other file handle can

access the file for writing, but other file handles can access the

file for reading.

FDS_FILE_LOCK_NONE

Request no lock for the file. Other processes can access the file

for reading and writing. This is the default value.

WriteThru indicates whether buffering or caching of file input and output

is disabled. Valid values are:

FDS_FILE_WRITETHRU_YES

File buffering or caching is disabled. All FdsWriteBinFile()

operations are immediately committed to DASD. All other DDS

file services automatically set FDS_FILE_WRITETHRU_YES.

FDS_FILE_WRITETHRU_NO

File buffering or caching is not disabled. The file buffering or

caching capabilities of the underlying operating system and

file system are exploited. This is the default.

Remarks
A file named FileName is opened with the attributes specified by Flag. If the file

exists, it is either opened or replaced, depending on the value of FileExistAction.If

the file does not exist, it is either opened or the API fails, depending upon the

value of FileNewAction.

The file pointer is placed at the first byte in the file.

File Services does not implement access control for file locking and sharing, nor

does it implement file buffering or caching. These features are implemented by

the operating system and file system based on the Flag parameter.

Error Conditions
FdsOpenBinFile() returns the following values:

-10 FDSERR_ACCESS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-210 FDSERR_FLAG
-260 FDSERR_IO
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-410 FDSERR_OVERFLOW

-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND

Examples
This example opens a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to create
int Flag; // Flag value
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Set flag for FdsOpenBinFile API call. Uses the default action of
// creating file if it does not exist (FDS_FILE_NEW_CREATE is default).
// --
Flag = FDS_FILE_EXIST_REPLACE |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_SHARED |
FDS_FILE_WRITETHRU_YES;
// ---
// Call FdsOpenBinFile API to create/replace "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
printf("FdsOpenBinFile completed with return code = (%d) \n", rc);

} // end if
else
{
 // else process errors
}

FdsQueryBinFileSize()

Purpose
Query the size of a binary file.

Syntax

#include <fds/file.h>

long FdsQueryBinFileSize(long FileHandle, unsigned long *CurrentSize);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenBinFile()

CurrentSize ð output

A pointer to the location of the current size of the binary file (in bytes). If

this API has not completed successfully, this value is undefined.

Remarks
The current size of the binary file (in bytes) is returned.

Error Conditions
FdsQueryBinFileSize() returns the following values:
-220 FDSERR_HANDLE
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE

Examples

This example returns the size of a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>
long rc; // Return from API call
long FileHandle; // File Handle from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to read
int Flag; // Flag value
unsigned long CurrentSize; // Current file size
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsQueryBinFileSize to get the size (in bytes) of
// "d: \binary.dat"
// ---
rc = FdsQueryBinFileSize(FileHandle, &CurrentSize);
printf("FdsQueryBinFileSize completed with return code = (%d).\n" " ---> File Size = (%d) \n",
rc, CurrentSize);

} // end if
} // end if

else
{
 // else process errors
}

FdsReadBinFile()

Purpose
Read a range of data from a binary file.

Syntax

#include <fds/file.h>

long FdsReadBinFile(long FileHandle, void *BufferPtr,
unsigned int *NBytesPtr,long Offset,
unsigned long Origin);

Parameters

FileHandle ð input
The file handle value obtained from FdsOpenBinFile().

BufferPtr ð input/output
A pointer to the location where the data that was read will be stored.

NBytesPtr ð input/output

Input A pointer to the maximum amount (in bytes) of the data to read.

This value must be less than or equal to 59 000. In either case,

this value must be less than or equal to the size of the allocated

space pointed to by BufferPtr.

Output If the call succeeds, a pointer to the amount (in bytes) of data

actually read. The output value is always less than or equal to

the input value.

Offset ð input

The number of bytes to move the file pointer. The Offset parameter is

used in conjunction with the Origin parameter to determine the new, file-

pointer position. If Offset is greater than 0 (zero), the file pointer is moved

that many bytes from the Origin position toward the end of the file. If Offset

is less than 0 (zero), the file pointer is moved that many bytes from the

Origin position towards the beginning of the file. If Offset is 0 (zero), the

file pointer is moved in accordance with the Origin parameter.

Origin ð input

The location from which to move the file pointer based on the value

of Offset. The Origin is specified as:

FDS_FILE_START_OF_FILE

Apply the value in Offset from the beginning of the file (the

file pointer is 0).

FDS_FILE_CURRENT_POS

Apply the value in Offset from the current file pointer position.

FDS_FILE_END_OF_FILE

Apply the value in Offset from the end of the file (the file pointer is

equal to the size of the file).

Remarks
The data beginning at the current file pointer is read. File Services adjusts the file
pointer before processing the request, based on the values supplied for Offset and
Origin.

If the value specified by NBytesPtr is greater than the number of bytes remaining

in the file, the actual number of bytes that were read is returned in NBytesPtr, the -

160 FDSERR_EOF error is returned, and the file pointer is set to the end of the

file.

If Offset is set to 0 (zero), and Origin is set to FDS_FILE_CURRENT_POS, no

seek action is performed before the read.

If the call succeeds, the FDS_SUCCESS message is returned and the file pointer

is advanced by the number of bytes that were read.

If the call fails, the location of the file pointer is not advanced.

Error Conditions
FdsReadBinFile() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-160 FDSERR_EOF
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE
-558 FDSERR_SEEK_TYPE

Examples

This example reads from a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to read
int Flag; // Flag value
char Buffer[500]; // Data read
unsigned int NBytes = 500; // Number of bytes to read
long Offset; // Offset
unsigned long Origin; // Origin
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// --
/ / Set Origin and Offset, to designate where in the file to read
// ---
Origin = FDS_FILE_END_OF_FILE; // Go to the end of the file
Offset = -10; // Begin reading at offset -10
// --
// Call FdsReadBinFile API to read the first record in the file
// ---
rc = FdsReadBinFile(FileHandle,

(void *) Buffer,
&NBytes,
Offset,
Origin);

printf("FdsReadBinFile completed with return code = (%d) \n"
" ---> Bytes read = (%s) \n"
" ---> Number of Bytes read = (%d) \n",
rc,
Buffer,
NBytes);

} // end if
} // end if
else
{
 // else process errors
}

FdsSeekBinFilePos()

Purpose
Move the file pointer to a specific location within the binary file.

Syntax

#include <fds/file.h>

long FdsSeekBinFilePos(long FileHandle,
long Offset,
unsigned long Origin,

unsigned long *NewPosPtr);

Parameters

FileHandle ð input
The file-handle value obtained from FdsOpenBinFile().

Offset ð input

The number of bytes to move the file pointer. The Offset parameter is

used in conjunction with the Origin parameter to determine the new, file-

pointer position. If Offset is greater than 0 (zero), the file pointer is moved

that many bytes from the Origin position toward the end of the file. If Offset

is less than 0 (zero), the file pointer is moved that many bytes from the

Origin position toward the beginning of the file. If Offset is 0 (zero), the file

pointer is moved in accordance with the Origin parameter.

Origin ð input

The location from which to move the file pointer based on the value

of Offset. The Origin is specified as:

FDS_FILE_START_OF_FILE

Apply the value in Offset from the beginning of the file (the

file pointer is 0).

FDS_FILE_CURRENT_POS

Apply the value in Offset from the current file pointer position.

FDS_FILE_END_OF_FILE

Apply the value in Offset from the end of the file (the file pointer

is equal to the size of the file).

NewPosPtr ð output

A pointer to the location where the new file position is stored.

Remarks
The file pointer is moved to the location specified by Offset and Origin.

It is not an error to seek past the end of the file, and the file size is not affected

by seeking past the end of the file. It is an error to specify a negative, file-pointer

position.

If FDS_SUCCESS is returned, NewPosPtr indicates the current position of the file
pointer.

Error Conditions
FdsSeekBinFilePos() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-350 FDSERR_NODE_NOT_FOUND
-530 FDSERR_ROLE_CHANGE
-558 FDSERR_SEEK_TYPE

Examples
This example will move the file pointer to a specified location in a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>
long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to use
int Flag; // Flag value
long Offset; // Offset
unsigned long Origin; // Origin
unsigned long NewPos = 0; // Current file position
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Origin and Offset, to determine byte count in the file
// ---
Origin = FDS_FILE_END_OF_FILE; // Go to the end of the file
Offset = 0; // Offset 0
// ---
// Call FdsSeekBinFilePos API to go to the last byte in the file
// ---
rc = FdsSeekBinFilePos(FileHandle,

Offset,
Origin,
&NewPos);

printf("FdsSeekBinFilePos completed with return code = (%d).\n"
" ---> The size of the file = (%d) bytes. \n",
rc,
NewPos);

} // end if
} // end if
else
{
 // else process errors
}

FdsSetBinFileLocks()

Purpose
Lock or unlock a range of bytes within a binary file.

Syntax

#include <fds/file.h>

long FdsSetBinFileLocks(long FileHandle, long Offset, unsigned
int NBytes, int Flag);

Parameters

FileHandle ð input
The file-handle value obtained from FdsOpenBinFile().

Offset ð input

The offset (in bytes) from the beginning of the file to the starting position

of the range to lock or unlock.

NBytes ð input
The length of the range to lock or unlock. NBytes must be a positive non-
zero integer.

Flag ð input

Used to control the specific lock or unlock action. It consists of the

following attributes:

RangeLockAction indicates the lock or unlock action for the range

specified. Valid values are:

FDS_FILE_LOCK

Lock the specified region. This is the default.

FDS_FILE_UNLOCK

Unlock the specified region.

RangeFileLock indicates the type of lock requested for the range

specified. These flags are valid only if FDS_FILE_LOCK is also

specified. Valid values are:

FDS_FILE_LOCK_RANGE_SHARED

Lock the region in shared mode. All programs can read the data

in the specified region, but cannot change the data. This includes

the program that issues this API call. This is the default.

FDS_FILE_LOCK_RANGE_EXCLUSIVE

Lock the region in exclusive mode. Only the program that

acquires this lock can read or change the data in the specified

region.

Remarks
Regions of the binary file are unlocked or locked.

The locking operation itself is managed by the underlying operating system, so

the results of this API may differ among operating systems.

Error Conditions
This example will lock a specified number of bytes in a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to lock
int Flag; // Flag value
long Offset; // Offset
unsigned long NBytes = 0; // Number of bytes tolock
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_ONLY |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
// If Open was successful
if (rc == FDS_SUCCESS)
{
// --
// Set Offset and the Number of bytes in the file to lock
// ---
Offset = 0; // Offset 0

NBytes = 4; // Number of bytes to lock

// ---
// Set the Flag for the FdsSetBinFileLocks API, to lock the bytes
//
// Everyone will be allowed to read these bytes, but no one //(including this process) will be
allowed to write to these bytes
// ---
Flag = FDS_FILE_LOCK | FDS_FILE_LOCK_RANGE_SHARED;
// ---
// Call FdsSetBinFileLocks API to lock the first 4 bytes in the file
// ---
rc = FdsSetBinFileLocks(FileHandle,
Offset,
NBytes,
Flag);
printf("FdsSetBinFileLocks completed with return code = (%d).\n"

" ---> (%d) bytes were locked. \n",
rc,
NBytes);

} // end if
} // end if
else
{
 // else process errors
}

FdsSetBinFileSize()

Purpose
Set the size of a binary file.

Syntax

#include <fds/file.h>

long FdsSetBinFileSize(long FileHandle, unsigned long NewSize);

Parameters

FileHandle ð input
 The file-handle value obtained from FdsOpenBinFile().

NewSize ð input
The new size of the binary file in bytes.

Remarks
The size of the binary file is set to the size specified by NewSize.

Error Conditions
FdsSetBinFileSize() returns the following values:
-10 FDSERR_ACCESS
-100 FDSERR_DISK_FULL
-220 FDSERR_HANDLE
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-530 FDSERR_ROLE_CHANGE

Examples
This example returns the size of a binary file.

#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc; // Return from API call
long FileHandle; // File Handle from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to read
int Flag; // Flag value

unsigned long NewSize; // New size of file

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;
// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);
if (rc == FDS_SUCCESS)
{

// --
// Set the new size (in bytes) of "d:\binary.dat"
// --
NewSize = 1024;
// --
// Call FdsSetBinFileSize to set the size (in bytes) of
// "d:\binary.dat"
// --
rc = FdsSetBinFileSize(FileHandle, NewSize);
printf("FdsSetBinFileSize completed with return code = (%d).\n",
 rc);

} // end if
} // end if
else
{
// else process errors
}

FdsWriteBinFile()

Purpose
Write a range of data to a binary file.

Syntax

#include <fds/file.h>

long FdsWriteBinFile(long FileHandle, const void *BufferPtr, unsigned int *NBytesPtr, long Offset,
unsigned long Origin);

Parameters

FileHandle ð input
The file-handle value obtained from FdsOpenBinFile().

BufferPtr ð input
A pointer to the location at which the data to write is stored.

NBytesPtr ð input/output

Input Pointer to the location where the size (in bytes) of the data to

write is stored. This value must be less than or equal to 59 000.

In either case, this value must also be less than or equal to the

size (in bytes) of the allocated space pointed to by BufferPtr.

If the current file pointer plus the size specified in NBytesPtr is

greater than the current size of the file, File Services attempts

to extend the end of the file.

Output

When this API has completed successfully, the data stored in

the location pointed to by NBytesPtr is replaced with the actual

number of bytes written, which could be less than the requested

number of bytes in error situations.

Offset ð input

The number of bytes to move the file pointer. The Offset parameter is

used in conjunction with the Origin parameter to determine the new file

pointer position. If Offset is greater than 0 (zero), the file pointer is moved

that many bytes from the Origin position towards the end of the file. If

Offset is less than 0 (zero), the file pointer is moved that many bytes from

the Origin position toward the beginning of the file. If Offset is 0 (zero), the

file pointer is moved in accordance with the Origin parameter.

Origin ð input

The location from which to move the file pointer based on the value

of Offset. The Origin is specified as:

FDS_FILE_START_OF_FILE

Apply the value in Offset from the beginning of the file (the

file pointer is 0 (zero)).

FDS_FILE_CURRENT_POS

Apply the value in Offset from the current file-pointer position.

FDS_FILE_END_OF_FILE

Apply the value in Offset from the end of the file (the file pointer

is equal to the size of the file).

Remarks
The file-pointer position is moved before a write operation, based on the

values provided for Offset and Origin. The data is written starting at the new

file-pointer position.

If Offset is set to 0 (zero) and Origin is set to FDS_FILE_CURRENT_POS, no

seek action is performed before the write.

If the call succeeds, the FDS_SUCCESS message is returned and the entire

range of data is written.

If the call fails, NBytesPtr contains the actual number of bytes written, if any.

In all situations, the file pointer is advanced by the actual number of bytes written.

Error Conditions
FdsWriteBinFile() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-100 FDSERR_DISK_FULL
-220 FDSERR_HANDLE
-222 FDSERR_HANDLE_FORCED_CLOSED
-260 FDSERR_IO
-350 FDSERR_NODE_NOT_FOUND
-360 FDSERR_NODE_TYPE
-490 FDSERR_REC_SIZE
-530 FDSERR_ROLE_CHANGE
-558 FDSERR_SEEK_TYPE

Examples
This example writes to a binary file.

#include <stdio.h>
#include <string.h>
#include <fds/fds.h>
#include <fds/defs.h>
#include <fds/file.h>
#include <fds/errno.h>

long rc; // Return from API Call
long FileHandle; // File Handle returned from Open
const char * FileName = "d:\ \binary.dat"; // Name of file to write
int Flag; // Flag value
char Buffer[500]; // Data to write
unsigned int NBytes = 500; // Number of bytes to write
long Offset; // Offset
unsigned long Origin; // Origin

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Set Flag for FdsOpenBinFile API call
// ---
Flag = FDS_FILE_EXIST_OPEN |
FDS_FILE_ACCESS_READ_WRITE |
FDS_FILE_LOCK_NONE |
FDS_FILE_WRITETHRU_NO;

// ---
// Open "d:\binary.dat"
// ---
rc = FdsOpenBinFile(&FileHandle, FileName, Flag);

// If Open was successful
if (rc == FDS_SUCCESS)
{

// ---

// Set data to write to "d:\binary.dat"
// ---
strcpy(Buffer, "Write this to the file");
NBytes = strlen(Buffer);
// ---
// Set Origin and Offset, to designate where in the file to write
// ---
Origin = FDS_FILE_START_OF_FILE; // Go to the beginning of the file
Offset = 0; // Begin writing at offset 0
// ---
// Call FdsWriteBinFile API to write record to "d:\binary.dat"
// - buffer will be written beginning at byte 0
// ---
rc = FdsWriteBinFile(FileHandle,

 Buffer,
 &NBytes,
 Offset,
 Origin);

printf("FdsWriteBinFile completed with return code = (%d).\n",
rc);

} // end if
} // end if
else
{
// else process errors
}

Chapter 5. Node Control
The Node Control APIs allow you to view a list of all nodes known to the DDS

system as well as to obtain the status of the acting primary distributor.

Node List
DDS maintains a list of all node IDs known to the DDS system, and each nodeôs

communication status with the acting primary distributor. The list includes nodes

that DDS has detected as being active on the system as well as user-defined

nodes that are not yet active.

An API is provided for applications to obtain this list. The list is maintained on the

acting primary distributor, but it can be obtained by calling the API from any node

in the system.

Before calling the API, an array of FDS_NODE_INFO structures must be

declared by your application. The FDS_NODE_INFO structure is defined in the

DDS header file NODES.H. This structure consists of a node ID and a status flag

that will be set DDS to either FDS_ACTIVE or FDS_INACTIVE, as defined in

defs.h. See Appendix A. Data Types for a definition of the FDS_NODE_INFO

structure. An unsigned, integer variable must also be declared that contains the

size of the memory buffer allocated for the array of FDS_NODE_INFO structures.

A void pointer to the array and a pointer to the size of the array buffer are

passed as variables to the API, which updates the array with the node list. The

array size must be large enough to contain all of the node IDs and node status

information contained in the node list. To determine the array size, multiply the

size of the FDS_NODE_INFO structure by the number of node IDs.

The list of known node IDs and status might change while DDS is running, so

this API should be called by an application each time a current list of node IDs is

required.

This API returns successfully only when DDS is running on both the node that

calls the API and the acting primary distributor node, and when communication is

established between the two nodes.

See ñFdsGetNodes()ò for information about how to use this API

FdsGetNodes()

Purpose
Obtain a list of all node IDs known to the DDS system and each

nodeôs communication status with the primary node.

Syntax
#include <fds/defs.h>
#include <fds/nodes.h>

long FdsGetNodes(void *NodeList, unsigned int *BufferSize);

Parameters

NodeList ð input/output

Input A void pointer to the allocated memory in which to store an array

of FDS_NODE_INFO structures.

Output

When this API completes successfully, an array of

FDS_NODE_INFO structures is copied into the memory pointed

to by this parameter. Each FDS_NODE_INFO structure contains

a node ID and a node status flag. See Appendix A. Data Types

for more information about the FDS_NODE_INFO structure.

BufferSize ð input/output

Input When this API is called, this parameter must point to an integer

that specifies the length of the NodeList buffer.

Output

When this API returns successfully, the length in bytes of the data

returned in the NodeList buffer is stored in the integer pointed to

by this parameter. If this API returns the error -40

FDSERR_BUFFER_SIZE,the required buffer size is stored in the

integer pointed to by this parameter, and the list of node IDs is not

returned.

Remarks
FdsGetNodes() is used to obtain a list of all node IDs known to the DDS system

and each nodeôs communication status with the primary node. This API should

be called every time a current list of node IDs or node status information is

required, because the node list or the node status might change while DDS is

running.

When FdsGetNodes() is called on a node that is not communicating with the

acting primary distributor, it returns an FDSERR_ROLE_NOT_FOUND return

code, indicating that the current node is not online and therefore cannot obtain

status information for any other node.

Error Conditions
FdsGetNodes() returns the following values:

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-550 FDSERR_ROLE_NOT_FOUND

-580 FDSERR_TIMEOUT

Examples
This example declares an array of FDS_NODE_INFO variables that holds the

node ID and status for 100 nodes. The FdsGetNodes() API is called to update the

array with the current node list and status.

#include <fds/fds.h>
#include <fds/nodes.h>
#include <fds/defs.h>
#include <fds/errno.h>

long rc;
FDS_NODE_INFO NodeList[100]
unsigned int BufferLength;

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful

if (rc == FDS_SUCCESS)

{

BufferLength = sizeof(FDS_NODE_INFO) * 100;

rc = FdsGetNodes((void*) NodeList, &BufferLength);

if (rc != FDS_SUCCESS)
{
 /* perform error processing */
}

 }

Obtaining the Status of the Acting Primary Distributor
The Node Control component opens a queue on a node whenever it is activated

as the acting primary distributor, and closes it when it is deactivated as the acting

primary distributor. This queue provides a method for applications to receive

notification messages when the acting primary distributor is no longer online.

In order for an application to receive notification messages, it must create a queue

of its own to receive those messages. Then it must open the queue defined by the

constant FDS_ONLINE_Q on the primary using the FdsOpenQ() function,

specifying the handle to its own opened queue for the NotificationQHandle

parameter.

The queue that is specified by the NotificationQHandle parameter will receive

a message whenever the queue is closed on the acting primary distributor.

The application can then attempt to open the queue on the node that

assumes the acting primary distributor role.

The message that is received by the applicationôs queue is defined as

FDS_IPC_MSG, and an FDS_IPC_MSG_STRUCT data structure is received with

the message. The FDS_IPC_MSG_STRUCT data structure contains the handle of

the closed queue and a reason code for the message. Applications should

compare this handle with the handle received from the FdsOpenQ() function when

fdsOnlineQ was opened. Both the FDS_IPC_MSG message and the

FDS_IPC_MSG_STRUCT data structure are defined in the ipc.h include file.

See ñFdsOpenQ()ò for more information about the FdsOpenQ()

function.

The fdsOnlineQ queue does not accept any messages written

to its queue. Its sole purpose is to provide a method for

determining when the role changes on the acting primary

distributor.

The return codes:

 -350 FDSERR_NODE_NOT_FOUND,
-460 FDSERR_QUEUE_NOT_FOUND,
and -550 FDSERR_ROLE_NOT_FOUND

are normal error codes returned by the FdsOpenQ() function when the acting
primary distributor is not online or when a role change is in progress.

This example opens a queue called MyApplQ for receiving FDS_IPC_MSG
messages.

#include <fds/fds.h>
#include <fds/ipc.h>
#include <fds/defs.h>
#include <fds/errno.h>
#define MAX_Q_SIZE 4096

long MyReadQFn(void)
{

long MyApplQHandle;
long Timeout = -1; // wait forever
long PrimaryQHandle;
FDS_IPC_MSG_STRUCT Buffer;
unsigned int BufferSize;
int MessageType;
long rc;
char OnlineQueueName(23);

// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initi alization was successful
if (rc == FDS_SUCCESS)
{

rc = FdsCreateQ("MyApplQ", // name of local queue
MAX_Q_SIZE, // amount of data the queue can hold
&MyApplQHandle); // handle to this queue
if (rc == FDS_SUCCESS)
{

strcpy(OnlineQueueName, "<FDSFDXAP::>");
strcat(OnlineQueueName, FDS.ONLINE_Q; //<FDSFDXAP::>fdsOnlineQ
rc = FdsOpenQ(OnlineQueueName, // primary queue name

 MyApplQHandle, // notification queue
Timeout, // time to wait until queue is open
&PrimaryQHandle); // queue handle

if (rc == FDS_SUCCESS)
{
BufferSize = sizeof(Buffer);

rc = FdsReadQ(MyApplQHandle, // handle to local queue
&BufferSize, // max size of single message

// and size of message returned
(void *) &Buffer, // message data
Timeout, // time to wait for a message
&MessageType); // type of message received.

else
{

if (MessageType == FDS_IPC_MSG)
{

if (Buffer.ClosedQHndl == PrimaryQHandle)
{

// do whatever the application
// needs to do when the
// primary is not online.

}
}

}
}

}
if (rc != FDS_SUCCESS)
{
 // handle errors
}
return rc;

}
}

Chapter 6. Data Distribution
This chapter describes the Data Distribution component of DDS. It also

describes the following APIs, which are available for use with the Data

Distribution component:

¶ FdsActivateAsPrimary() ð Activate the local node as the acting primary

distributor

¶ FdsAddDomainNode() ð Add a node to a broadcast domain

¶ FdsCreateBcastDomain() ð Create a broadcast domain

¶ FdsCreateSyncID() ð Create a synchronization ID

¶ FdsDeactivatePrimary() ð Change the role at the local node from acting

¶ primary distributor to acting backup distributor

¶ FdsDeleteBcastDomain() ð Delete a broadcast domain

¶ FdsDeleteDomainNode() ð Remove a node from a broadcast domain

¶ FdsGetDomainList() ð Get the list of all the domains in the system

¶ FdsGetDomainNodes() ð Get the list of nodes that are in a broadcast
domain

¶ FdsQueryBackupState() ð Query the state of the backup distributor

¶ FdsQueryDistribution() ð Query a distribution directory entry for a file or
subdirectory

¶ FdsSetDistribution() ð Modify the distribution characteristics of files and
subdirectories

¶ FdsSetupDistMonitor() ð Prepare to receive notification of data-distribution

events

¶ FdsSetupSyncIDNotify() ð Prepare to receive notification of file or directory
synchronization

The Data Distribution component provides a file-distribution service that

replicates data on multiple nodes. The component synchronizes each image

during normal operations and performs file reconciliation when failed nodes are

brought back into service.

The Data Distribution component is optional on any particular node, though at

least one node in a multi-node system must be installed and configured as the

primary distributor. The prime copy of all distributed files resides on the primary

distributor. As the prime copy of a distributed file is updated, renamed, or deleted,

the changes are distributed to all nodes that have an image of that file. The prime

copy of a distributed file is the only copy of the file that can be changed or

updated. The changes are distributed according to the distribution frequency of the

file (see ñDistribution Frequencyò)

In addition to file distribution, the Data Distribution component provides a

reconciliation service. This service ensures that if a node misses updates for any

reason, each distributed file on the node is resynchronized with the prime copy

of the file when LAN communication is established with the primary distributor.

Two different methods are used for distributing updates and performing file
reconciliation. Connection-oriented messages are exchanged between the node
being updated (the primary distributor) and the backup node. Broadcast is used for
distributing updates to subordinate nodes to maximize performance.

Note: The Data Distribution component does not interoperate with IBM 4680

Operating System data distribution or with IBM 4690 Operating System

data distribution.

Distributed Files

Files are distributed across multiple nodes. An instance is a copy of a distributed

file on a given node within a distribution domain. There are three types of

instances:

¶ Prime copy: resides on the acting primary distributor node

¶ Backup copy: resides on the acting backup distributor node

¶ Image copy: all instances other than the prime copy

File Types

All types of files can be distributed. All operations that result in updates to a

distributed file, including deletions for files and subdirectories, are distributed

except for file-attribute operations (the read-only, system, hidden, archive flags

and file security attributes). A copy operation is treated by the Data Distribution

component as an update to the copied-to file. If the copied-to file exists before the

copy operation, and if it is a distributed file, the update is distributed. If the copied-

to file does not exist before the copy, the update is distributed (that is, the copied-

to file is created on image nodes) if and only if the newly created file is created in a

subdirectory that is distributed.

DDS can only distribute files to which DDS has access. DDS runs under the

System account, so any files that are to be distributed must be accessible to

the System (Administrator) account.

Note: DDS supports the distribution of files up to a maximum size of 4 GB.

If the DistRenamedFile configuration keyword is set to NO, the net effect of

renaming a file or subdirectory is the same as that of a copy followed by a

deletion of the original file or subdirectory. The renamed-to file or subdirectory will

remain distributed after the rename if and only if the new file or subdirectory is in

a subdirectory that is distributed. However, if the DistRenamedFile configuration

keyword is set to YES (the default), the effect is the same in all cases, except that

distributed files not in a distributed directory will remain distributed, though with a

new name.

Your applications do not have to use any special APIs to cause data distribution to

occur once a file or subdirectory has been specified as distributed. For example,

file updates that result from native, operating-system file operations to byte-stream

files (such as WriteFile()) are distributed. (See the note under ñReconciliationò for

information about Data Distributionôs use of distributed files.)

Your applications can access a keyed file as a byte-stream file, using your native,

operating-system file operations instead of the keyed-file APIs available with DDS.

When native, operating-system file operations are used to modify a distributed

keyed file, the Data Distribution component distributes the file as if it were a byte-

stream file. When keyed-file APIs are used, keyed-file updates are distributed. To

ensure correct distribution, an application should not have a keyed file open with

write access via both native operating system and keyed-file APIs concurrently,

and should open a distributed keyed file in a way that prevents other processes

from having write access to it when native, operating-system calls will be used to

modify it. You can provide this protection by specifying the

FDS_FILE_LOCK_EXCLUSIVE or FDS_FILE_LOCK_SHARED flag on

FdsOpenBinFile().

Distribution Directory
Data distribution allows distribution to be managed at both the file level and the

subdirectory level. You can specify the distribution of entire subdirectories

without having to be aware of the specific files that exist in them. A distribution

directory provides this capability.

The distribution directory determines which files are distributed, the nodes to

which the files are distributed, and the distribution frequency for each file. Each

entry in the directory represents either a single file or a subdirectory, and stores

the following information:

Name Data distribution supports a hierarchical name space. Files with

arbitrarily long path specifications can be distributed.

Subdirectory indicator

The subdirectory indicator specifies whether the directory entry represents

a file or a subdirectory.

Domain type

The distribution domain type specifies either mirrored domain or

broadcast domain.

Distribution domain name

The domain name is a broadcast domain name if the type is broadcast

domain. There is only one mirrored domain, so no name is required in

this case. Note that a file or subdirectory can be distributed to one

distribution domain at most.

Distribution frequency

The distribution frequency is one of the following:

¶ Distribute on close

¶ Distribute on update

See ñDistribution Frequencyò for an explanation of distribution

frequency.

Scope qualifier

The scope qualifier is applicable only to directory entries that represent

subdirectories. The two possible values and their meanings are:

FILE Only the files in the subdirectory are distributed.

TREE All files and subdirectories are distributed.

The following APIs are provided to manipulate the distribution directory:

¶ FdsAddDomainNode() -Add a node to a broadcast domain

¶ FdsCreateBcastDomain() -Create a broadcast domain

¶ FdsDeleteBcastDomain() -Delete a broadcast domain

¶ FdsDeleteDomainNode() -Remove a node from a broadcast domain

¶ FdsGetDomainNodes() -Get the list of nodes that are in a broadcast

domain

¶ FdsQuer yDistribution() -Query a distribution directory entry for a file or
subdirectory

¶ FdsSetDistribution() -Modify the distribution characteristics of files and

subdirectories

Directory Management

The distribution directory resides on the primary distributor node. Because the

backup distributor must be prepared to assume the role of primary distributor at

any time, it maintains a duplicate copy of the directory. In addition, each

subordinate node maintains locally that portion of the directory with entries

relevant to it.

Logical Names

Logical names can be used to cause the instances of a given distributed file or

subdirectory to have different path names on the nodes to which it is distributed.

This function provides flexibility when using a system of nodes where every node

is not configured identically in terms of applications and disks.

To use logical names, define a logical name for a distribution directory entry that

resolves to a different file or subdirectory operating-system path name on each

node within the distribution domain. The logical name is the operating-system

path name from the distribution directory entry, prefixed with the percent

character (%).

Note: Because Windows files systems are not case-sensitive, and the Name
Services component is case-sensitive, logical names that contain the percent
character must be uppercase.

The percent character (%), although not reserved, has a special meaning for data

distribution. It identifies a logical name on the acting primary distributor that itself

resolves to another logical name. This second logical name must exist on each

node within the distribution directory. The second logical name can be used by

applications and the Data Distribution component to access the prime copy or an

image copy of the distributed file, even though the operating system path name

might differ on each node. All of the logical names mentioned above must be

active on each node within the distribution domain before the creation of the

associated distribution-directory entry.

For example, assume that you want to distribute a subdirectory within a broadcast

domain that contains three nodes:

¶ The primary distributor

¶ The backup distributor

¶ A node with a node ID of OTIS

The operating-system path name of the subdirectory on the configured primary

distributor is c:\otis_stuff\config_files\. The operating-system path name of the

subdirectory on the configured backup distributor is d:\otis_stuff\config_files\.

The operating-system path name of the subdirectory on node OTIS is

c:\config_files\.

To distribute the subdirectory, follow these steps:

1. Define the following logical names on the configured primary distributor:

 Logical Name Resolved Name

<%C:\OTIS_STUFF\CONFIG_FILES\> otis_stuff

<otis_stuff> c:\otis_stuff\config_files\

2. Define the following logical names on the configured backup distributor:

 Logical Name Resolved Name

<%D:\OTIS_STUFF\CONFIG_FILES\> otis_stuff

<otis_stuff> c:\otis_stuff\config_files\

3. Define the following logical names on node OTIS:

 Logical Name Resolved Name

<%C:\CONFIG_FILES\> otis_stuff

<otis_stuff> c:\config_files\

See Chapter 7. Name Services and the refer to IBM Distributed Data
Services/Controller Services Feature for Windows Installation and
Configuration Guide for information about how to create logical names.

The Data Distribution component uses the logical names that begin with the

percent character (%) to detect when a logical name must be used when

accessing files and subdirectories on different nodes within the distribution

domain. This logical name resolves to the logical name that must be used by the

Data Distribution component to access the file or subdirectory on different nodes

within the distribution domain.

Distribution Frequency
The effective distribution frequency of a file is specified in the distribution

directory as either distribute-on-close or distribute-on-update. Changes are

distributed when the file is closed or when the contents are flushed if the

distribution frequency is distribute on close. (You can flush the contents of a file

using the FlushFileBuffer() API on Window.)

The File System Interface component forces the write-through option for all opens

of files that have a distribution frequency of distribute-on-update. Refer to the IBM

Distributed Data Services/Controller Services Feature for Windows Installation

and Configuration Guide for more information about the File System Interface

component.

Each separate update to byte-stream files distributed to broadcast domains with

an effective distribution frequency of distribute-on-update must be limited in size to

a maximum of 4 KB. Updates larger than 4 KB to such files are rejected by the

Data Distribution component. The application detects this condition as an error

returned by the update API (for example, WriteFile() on Windows.

Reconciliation
Reconciliation is the process of making an image copy of a file identical to

the prime copy. There are two forms of reconciliation:

Full reconciliation

Copies the prime copy of the file to the backup distributor or to

a subordinate node.

Partial reconciliation

Achieves the same end result by applying a saved list of updates to

the down-level image. This method is used for keyed files. See

ñKeyed-File Servicesò for more information about keyed files.

Byte stream files are reconciled in a similar manner, by copying to the

down-level image only those portions of the prime copy that have been

modified since the last time the two instances were known to be

identical.

Partial reconciliation is used only for keyed files larger than 32 KB and
byte stream files that have an effective distribution frequency of distribute
on update. Even then, certain error conditions can cause full reconciliation
to occur. Full reconciliation is used in all other circumstances. Partial
reconciliation is not used for small keyed files, because full reconciliation
of small files is more efficient than applying multiple updates.
Reconciliation occurs, if required, at an image node each time it
establishes a connection with the primary distributor, including during
IPLs. There are two exceptions to this rule:
Distribute-on-close files in the mirrored domain are not reconciled
immediately.
A distribute-on-close file in a broadcast domain is not reconciled
immediately if it has been modified by an application since the last open,
close, or flush operation.

In both cases, the file is effectively reconciled the next time it is closed or
flushed at the primary distributor.

Note: The Data Distribution component must open the prime copy of a file on

the primary distributor to reconcile it to the acting backup distributor or a

subordinate node. An open file cannot be:

¶ Deleted. A user could be performing an erase function at the

command line or a program calling the DeleteFile() on Windows.

¶ Renamed. A user could be performing a rename function at the

command line or a program calling the MoveFile() on Windows.

¶ The target of the CopyFile() on Windows.

Because reconciliation of a file can occur at any time (for example, as the result

of power being turned on at a node), an attempt to delete or rename a distributed

file, or a programôs call to DosCopy() or CopyFile() could fail unexpectedly. The

user or program that encounters such a situation should respond by retrying the

operation at a later time.

The reconciliation subsystem requires an additional, free working area. This free

working area must be available on a controlled drive of the subordinate

workstation and backup distributor. The amount of free working area must be

equal to the size of the largest file that will be reconciled after applications have

been started on these workstations. Any file defined as distribute-on-close is

normally distributed via full reconciliation. Of course, there must also be enough

disk space for the distributed files, as well as for the free working area.

Data Integrity and Availability
Reconciliation recovers from single failures by making all instances of a file

identical after the failure is corrected. However, the order in which files are

reconciled to a node is not specified and is unpredictable. This fact has two

ramifications:

1. While a node is being reconciled, files, including individual files and files
relative to other files, pass through inconsistent states.

2. There are some combinations of primary-distributor and backup-distributor
failures that could result in an acting primary distributor with an inconsistent
set of files. These are double failures from which the Data Distribution
component cannot automatically recover. For example:

¶ The acting primary distributor fails.

¶ The acting backup distributor is made the acting primary distributor.

¶ The old primary distributor is repaired and begins to reconcile from the
current acting primary distributor.

¶ The old acting backup distributor (current primary distributor) fails.

¶ The current acting backup distributor is made the acting primary

distributor again, and now has inconsistent files.

Role changes can not only result in data loss (from distribute on close files),
but can also lead to double failures that result in inconsistent files.

In the context of data integrity and availability, failures are:

¶ Abnormal termination of a nodeôs operating system

¶ Abnormal termination of DDS on a node

¶ Hard-disk failures CPU or memory failures

¶ LAN failure

¶ Power-line disturbances (PLDs)

See the note under ñReconciliationò for information about the Data
Distribution componentôs use of distributed files.

Distribute -on-Update Files: DDS prevents the loss of data from a distribute-on-

update file due to a single failure. When an application receives a successful

return code from a file-update operation, the update has been performed on the

prime copy of the file, and has been recorded in a way such that:

1. The update will not be lost even if the primary distributor fails. This fact
implies that the update has been saved by the backup distributor

2. All nodes to which the file is distributed will eventually receive the update.

Distribute -on-Close Files: Distribute-on-close files do not provide the same

degree of data integrity as distribute-on-update files. Distribute-on-close files are

appropriate when performance is more important than ensuring that no updates

are lost.

After a single failure, DDS prevents the loss of data applied to a distribute-on-
close file up to the time of the last successful close of the file or up to the last
flush operation. However, Data Distribution distributes distribute-on-close files
asynchronously, so that a close operation or a flush operation will be completed
before the distribution is completed.

Updates to distribute-on-close files are blocked while the file is being
distributed. Such a distribution might be the result of a FlushFileBuffers() on
Windows, or due to the reconciliation of a node. This restriction allows a
consistent version of the file to be distributed.

Activating and Deactivating the Acting Primary Distributor
The primary task of the configured backup distributor is to assume control when

the configured primary distributor becomes disabled or is deactivated. The first

time the system is started, the configured primary distributor assumes the acting

primary-distributor role. It remains the acting primary distributor until it becomes

disabled or is deactivated.

Two options are available for activating the acting backup distributor as the acting primary
distributor. You can issue a DDS command using the Node Control Utility to manually
activate the acting backup distributor as the acting primary distributor. This option gives you
control over the timing the activation and is useful in preparing for scheduled machine
outages. DDS also provides an automatic switch-over option that results in the acting
backup distributor automatically assuming the role of primary distributor. Each of these
functions is described in the following sections.

User-Initiated Activation of the Primary Distributor

The default behavior of DDS results in the acting backup distributor not assuming

the acting primary-distributor role automatically. In this case, two steps are

required before the acting backup distributor can be activated as the primary

distributor.

1. Deactivating the acting primary distributor
2. Activating the configured backup distributor as the acting primary distributor

You must deactivate the current, acting primary distributor before you can activate

a new primary distributor, unless the current, acting primary distributor is not

running or is not communicating with other workstations. Refer to IBM Distributed

Data Services/Controller Services Feature for Windows Userôs Guide for more

information about using the Node Control Utility to perform these deactivation and

activation steps.

Note: If the configured primary distributor will be disabled for only a short period

of time, you may not need to activate the configured backup distributor as

the acting primary distributor. Such might be the case if the applications

running on other nodes use image copies of input files and asynchronously

write output data to the acting primary distributor.

When the configured primary distributor resumes normal operation (it is powered

ON and connected to the LAN) it does not automatically resume its role as the

acting primary distributor. If the configured backup distributor was activated by

the operator as the acting primary distributor, the configured primary distributor

assumes the acting backup-distributor role.

To return the system to its normal state, you must first deactivate the acting

primary distributor (the configured backup distributor) and then reactivate the

configured primary distributor as the acting primary distributor.

More complex scenarios are possible. For example, the acting primary

distributor could fail, the operator could activate the acting backup distributor as

the acting primary distributor, and then the new, acting primary distributor could

fail. At this point, there are several possibilities:

¶ The new acting primary distributor could resume normal operation. In this

case, no data would be lost.

¶ The original acting primary distributor could resume normal operation before

the new acting primary distributor. In this case the original acting primary

distributor assumes its role again as the acting primary distributor. Data will be

lost that was collected (updated) on the new acting primary distributor after the

original acting primary distributor failed.

¶ Both the original acting primary distributor and the new acting primary

distributor could resume normal operation simultaneously. In this case, the

new acting primary distributor detects that it assumed the role of acting

primary distributor more recently than the original acting primary distributor,

and again assumed the acting primary distributor role. No data would be lost

in this case.

The following APIs control the activation and deactivation of the

primary distributor:

¶ FdsActivateAsPrimary()

¶ FdsDeactivatePrimary()

The deactivation of the acting primary distributor will fail if the backup distributor

is not online and fully reconciled. Use the FdsQueryBackupState() API to

determine if the backup distributor is ready to be activated as the primary

distributor.

Applications that run on the acting primary distributor should be stopped

before deactivating the acting primary distributor.

The FdsSetupDistMonitor() API can be used by an application to detect

the activation and deactivation of the primary distributor.

Automatic Switch-Over

The DDS Automatic Switch-Over feature provides the capability for

automatically activating the acting backup distributor as the acting primary

distributor. The activation occurs when the workstation that was performing

the acting backup distributor role has lost communication with the acting

primary distributor. Lost communications can result from a hardware failure,

shutdown of the operating system, or any other event that results in the

termination of DDS on the acting primary distributor.

To enable automatic switch-over, you must install the DDS Automatic Switch-

Over feature and change your DDS configuration to enable it. Refer toIBM

Distributed Data Services/Controller Services Feature for Windows Installation

and Configuration Guide for information about:

¶ configuring automatic switch-over using the AutoSwitchOver,

AutoSwitchOverDelay

¶ AutoSwitchOverForce keywords, for a list of conditions that must be met

before automatic switch-over will occur

¶ the recommended network hardware installation and configuration to use
with automatic switch-over.

When an automatic switch-over activation occurs, the result is the same as if a

manual (user-initiated) activation were performed using the Node Control Utility.

In particular, the FDSAP batch file will be executed. Configuring DDS for

automatic switch-over does not prevent you from initiating a manual activation or

deactivation. Automatic switch-over has no effect on the manual activation and

deactivation functions. However, when the acting primary is manually

deactivated, that same node will not automatically activate until it has

successfully reconciled with an acting primary distributor.

The typical, automatic-switch-over scenario occurs when the machine that is

performing the acting-primary role fails or is powered off. The following events

occur to complete the automatic switch-over:

1. The acting primary distributor fails or is powered off.
2. The acting backup distributor:

¶ detects the loss of communication with the acting primary

distributor

¶ continually tries to reestablish communication with the acting

primary distributor for the amount of time specified by the

AutoSwitchOverDelay configuration keyword

¶ fails to reestablish communication and automatically activates as

the acting primary distributor.

3. The original primary distributor is restarted and detects the new acting

primary distributor. It establishes communication with the new primary

distributor, reconciles its files with those on the new acting primary

distributor, and becomes the acting backup distributor.

When DDS is configured for automatic switch-over, automatic deactivation is

also enabled. Automatic deactivation entails the deactivation of the acting

primary distributor whenever both of the following conditions are met:

1. The acting primary distributor can accurately determine when it is
disconnected from the LAN, or is unable to communicate with the LAN.

Notification of disconnection from the LAN is not communicated by all network
adapters to applications such as DDS. For LAN configuration requirements
when using the DDS Automatic Switch-Over feature, refer to the Automatic
Primary Distributor Switch-Over section in the IBM Distributed Data
Services/Controller Services Feature for Windows Installation and
Configuration Guide.

2. The acting primary distributor has communicated with an acting backup
distributor after DDS became the acting primary distributor.

Under these conditions, DDS automatically deactivates the acting primary

distributor and executes the FDSDP batch file to prevent two machines from both

performing the acting primary distributor role.

Automatic switch-over is always initiated after the acting backup distributor

detects a loss of communication with the acting primary distributor. The

configured role of the machine is not considered. This independence from the

configured roles allows automatic switch-over to occur repeatedly in either

direction to insure that there is always an active primary distributor.

Consider a system with a configured primary distributor (node CPD) and a

configured backup distributor (node CBD). The following scenario demonstrates

the flexibility of the DDS automatic switch-over capability.

1. DDS is started on CPD and CBD. CPD assumes the acting primary-distributor
role and CBD the acting backup-distributor role.

2. CPD fails, resulting in CBDôs assuming the acting primary-distributor role.
Some time later, CPD resumes normal operation and becomes the acting
backup distributor. At this point, you could continue running with the roles
reversed or node CBD could be manually deactivated and CPD could be
manually activated as the primary distributor, so that the acting and configured
distributor roles again match.

3. Assume the system was allowed to continue with CBD as the acting primary
distributor and CPD as the acting backup distributor. If CBD fails or is
manually deactivated at this point, the acting primary role would switch back to
CPD. When CBD resumed normal operation, it would automatically assume
the role of acting backup distributor.

4. The roles could continue to be switched between the two machines
indefinitely, as the acting primary distributor fails or is taken offline.

Automatic switch-over should be used when it is critical that your DDS system
always has a primary distributor available. However, the decision to use the
automatic switch-over function should be made carefully; in some cases
automatically activating the acting backup distributor as the acting primary
distributor can lead to loss of data. For example, when the acting backup
distributor is activated as the primary, all updates since the last flush made to open
files with a distribution frequency of distribute-on-close are lost. When manually
activating, you may be able to assure that all distributed files have been closed on
the acting primary distributor before deactivating and then activating the backup
distributor as the primary. Automatic activation does not give you that opportunity.

Performance
The number of distributed files and the block size of keyed files can affect

system performance.

Number of Distributed Files

DDS performance is affected by the number of distributed files in the system.

As the number of distributed files increases, the response time of file operations

can become slower.

There is no specific upper limit on the number of distributed files that will

guarantee good performance. Performance is greatly affected by many factors in

the system. However, systems with 10,000 or fewer distributed files are less likely

to experience performance degradation related to the total number of distributed

files.

When totaling the number of distributed files, count files in distributed directories

as well as those which are explicitly distributed. Distributed files with long file

names should be counted as two files when considering performance

implications.

Keyed Files

Update and distribution throughput for distribute-on-update keyed files is reduced

as the record size or key size increases. A distribute-on-update keyed file can be

updated while a node is performing a full reconciliation of the same file. However,

the full reconciliation of the file reduces the throughput of the updates. The larger

the block size of the keyed file, the greater the reduction in throughput.

A distribute-on-update keyed file can also be updated while a node is performing

a partial reconciliation of the same file. However, the partial reconciliation of the

file reduces the throughput of the updates.

Restrictions
Data Distribution has the following restrictions:

¶ The following restrictions apply to rename operations, such as a user

performing a rename function at the command line or a program calling an

API to rename the file:
ï A distributed directory cannot be renamed.
ï A directory that contains a distributed file, either directly or in a

descendant subdirectory, cannot be renamed.

¶ If a directory has been set to be distributed with a scope qualifier of

FDS_SCOPE_TREE, you cannot move another directory into the distributed

directory. For example, if directory x has been set to be distributed with a

scope of FDS_SCOPE_TREE, you cannot make directory y (using the

MOVE command) a subdirectory of x.

¶ The following restrictions apply to using the distribution directory:

ï Files that reside on the boot partition cannot be distributed.
ï You cannot distribute the root directory of a drive.
ï No file or directory in the DDS installation or WORK directories can be

distributed.

ï All possible combinations of subdirectory indicator, domain type,

distribution frequency, and file type (byte stream or keyed) are

supported, with the following exception:

Byte stream files (and subdirectories with byte-stream files) that have

distribution frequencies of distribute-on-update should not be distributed

to a broadcast domain if updates to these files are more than 4 KB each.

Such directory entries are allowed, but updates to these files of more

than 4 KB each are rejected by Data Distribution.

¶ The key length of distributed keyed files is limited to a maximum of 255

bytes.

FdsActivateAsPrimary()

Purpose
Activate the local node as the acting primary distributor.

Syntax

#include <fds/dist.h>

long FdsActivateAsPrimary(int ForceFlag);

Parameters

ForceFlag ð input
A flag that indicates whether to force activation. Valid values are:

FDS_FORCE
Force activation

FDS_NO_FORCE
Do not force activation

Remarks
FdsActivateAsPrimary() activates the local node as the acting primary

distributor. Two nodes are eligible to be the acting primary distributor: the

configured primary distributor and the configured backup distributor. Whenever

one node is activated as the acting primary distributor, the other node assumes

the role of the acting backup distributor. If the local node is not fully reconciled

and the ForceFlag does not specify force activation, the API fails with the -380

FDSERR_NOT_RECONCILED error.

This API does not start the FDSAP.BAT batch file (Windows). The FDSAP

command or batch file is started by the Node Control Utility, which uses this API

to activate the configured backup distributor or the configured primary distributor

as the acting primary distributor. See the IBM Distributed Data

Services/Controller Services Feature for Windows Userôs Guide for more

information about the Node Control Utility.

This API can succeed only when called on either the configured backup

distributor or configured primary distributor, and neither is the acting primary

distributor.

Error Conditions
FdsActivateAsPrimary() returns the following values:

-60 FDSERR_CONFIG

-170 FDSERR_EXISTS

-210 FDSERR_FLAG

-360 FDSERR_NODE_TYPE

-380 FDSERR_NOT_RECONCILED

-560 FDSERR_SEQUENCE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>
long rc; // Return from API Call

// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// The following call to FdsActivateAsPrimary API must be issued
// from either the Configured Primary or the Configured Backup
// Distributor
// ---
rc = FdsActivateAsPrimary(FDS_FORCE);
printf("FdsActivateAsPrimary completed with return

code = (%d).\n", rc);
} // end if
else
{
 // else process errors
}

FdsAddDomainNode()

Purpose
Add a node to a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsAddDomainNode(const FDS_DOMAIN_NAME DomainName, const
FDS_NODE_NAME NodeID);

Parameters

DomainName ð input
Indicates the broadcast domain name to which you want to add the node.

NodeID ð input
Indicates the node ID of the node you want to add to the broadcast
domain.

Remarks

FdsAddDomainNode() adds a node to a broadcast domain. All files distributed

to the domain are loaded onto the node.

This API can be called from an application running on the acting primary

distributor only.

Error Conditions
FdsAddDomainNode() returns the following values:
-60 FDSERR_CONFIG
-90 FDSERR_DISK
-120 FDSERR_DOMAIN_NAME
-130 FDSERR_DOMAIN_NOT_FOUND
-170 FDSERR_EXISTS
-340 FDSERR_NODE_NAME
-360 FDSERR_NODE_TYPE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call

// Modify Domain Name
FDS_DOMAIN_NAME DomainName = "DOMAINxx";
FDS_NODE_NAME NodeID = "Node_A"; // Node to Add to Domain
// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsAddDomainNode to add Node ID "Node_A" to DOMAINxx
// --
rc = FdsAddDomainNode(DomainName, NodeID);
printf("FdsAddDomainNode completed with return code = (%d) \n",

rc);
} // end if
else
{
// else process errors
}

FdsCreateBcastDomain()

Purpose
Create a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsCreateBcastDomain(const FDS_DOMAIN_NAME DomainName, unsigned int BufferSize,
FDS_NODE_NAME *NodeList);

Parameters

DomainName ð input

Indicates the name of the broadcast domain to be created. It must not be

equal to the node ID of any node in the system.

BufferSize ð input Indicates the size of the NodeList buffer in bytes.

NodeList ð input

A pointer to an array of FDS_NODE_NAME elements. Each

FDS_NODE_NAME contains a node ID.

Remarks
FdsCreateBcastDomain() can be called from an application running on the acting

primary distributor only. It creates a broadcast domain with the nodes indicated in

NodeList. If no NodeList is passed (NodeList is zero), an empty broadcast domain

is created.

This API should not be used to create a broadcast domain that begins with the

prefix FDS. The characters FDS are reserved. This function cannot be used to

create a broadcast domain named MIRRORED.

Only one broadcast domain is supported.

Error Conditions
FdsCreateBcastDomain() returns the following values:
-20 FDSERR_ADDRESS
-60 FDSERR_CONFIG
-120 FDSERR_DOMAIN_NAME
-170 FDSERR_EXISTS
-340 FDSERR_NODE_NAME
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <string.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_DOMAIN_NAME DomainName = "DOMAINxx"; // New Domain Name
FDS_NODE_NAME NameList[5]; // List of Nodes in Domain
unsigned int BufferSize = sizeof(NameList); // Size of NameList
// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Set up list of Nodes in Domain

// --
strcpy(NameList[0], "Node_1");
strcpy(NameList[1], "Node_2");
strcpy(NameList[2], "Node_3");
strcpy(NameList[3], "Node_4");
strcpy(NameList[4], "Node_5");
// --
// Call FdsCreateBcastDomain API to create Domain DOMAINxx
// - create DOMAINxx with 5 Node IDs
// --
rc = FdsCreateBcastDomain(DomainName, BufferSize, NameList);
printf("FdsCreateBcastDomain completed with

return code= (%d) \n", rc);
} // end if
else
{
 // else process errors
}

FdsCreateSyncID()

Purpose
Create a synchronization ID associated with a particular, distributed-file update.

Syntax

#include <fds/file.h>

long FdsCreateSyncID(long FileHandle, FDS_SYNC_ID *SyncID);

Parameters

FileHandle ð input

Indicates the file handle returned by DDS when the sequential, keyed,

or binary file was opened.

SyncID ð output

Pointer to the location where the synchronization ID is stored.

Remarks
FdsCreateSyncID() can be called from an application running on any node. It

returns a synchronization identifier. The synchronization ID allows an application

to determine when a certain set of file updates have been distributed to one or

more nodes within a distribution domain. For files with a distribution frequency of

distribute-on-update (DOU), this API should be called by the application

immediately after the file update for which the synchronization ID is to be

recorded.

For keyed files with a distribution frequency of distribute-on-close (DOC), this API

should be called by the application immediately after the file has been flushed

using FdsCloseKeyedFile().For binary files with a distribution frequency of

distribute-on-close (DOC), this API should be called by the application immediately

after the file has been flushed using FdsFlushBinFile().

Note: This API should not be used with sequential DOC files.

The synchronization ID identifies the current state of the file in the distribution

domain in terms of the last update applied at the acting primary distributor. The

synchronization ID can be used by an application at any node within the

distribution domain to wait until the file at that node is brought to the state

identified by the synchronization ID obtained at the acting primary distributor.

Error Conditions
FdsCreateSyncID() returns the following values:

-60 FDSERR_CONFIG

-220 FDSERR_HANDLE

-350 FDSERR_NODE_NOT_FOUND

-375 FDSERR_NOT_DISTRIBUTED

-530 FDSERR_ROLE_CHANGE

-560 FDSERR_SEQUENCE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/file.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_SYNC_ID SyncID; // SyncID
long FileHandle; // FileHandle
unsigned int KeySize; // Size of key
unsigned int RecordSize; // Size of records to write

// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// The following call to FdsCreateSyncID API can be invoked from an
// application running on any node.
// For this example, assume this program is running on the
// acting primary and you want to notify a remote node regarding
// updates to a keyed file.
// ---
// ---
// Open the distribute on update file, "d:\dou\ itemrec.dat", so
// a SyncID can be created for this file.
// ---
rc = FdsOpenKeyedFile(&FileHandle,

 "d:\ \dou\ \ itemrec.dat",
 &KeySize,
 &RecordSize,

 FDS_FILE_ACCESS_READ_WRITE);

if (rc == FDS_SUCCESS)
{

// --
// Call FdsCreateSyncID API for file "d:\xxx\ itemrec.dat"
// --
rc = FdsCreateSyncID(FileHandle, &SyncID);
printf("FdsCreateSyncID completed with return code = (%d).\n",
 rc);
// --
// Open a queue on the remote node and write the SyncID
// returned from FdsCreateSyncID into it.
// (See the FdsSetupSyncIDNotify API for more information as to
// what occurs on the remote node.)
// --

 } // end if
} // end if
else
{
// else process errors
}

FdsDeactivatePrimary()

Purpose
Deactivate the primary distributor role at the local node.

Syntax

#include <fds/dist.h>

long FdsDeactivatePrimary() ;

Remarks
FdsDeactivatePrimary() deactivates the acting primary distributor role at the local

node. This API will succeed only when called on the acting primary distributor. It

will fail if the acting backup distributor is not online and fully reconciled.

This API may take a long time to complete. Running this API when there is a lull

in system activity improves the time required.

This API does not start the FDSDP.BAT batch file.. The FDSDP command and

batch files are started by the Node Control Utility, which uses this API to

deactivate the acting primary distributor. See the IBM Distributed Data

Services/Controller Services Feature for Windows Userôs Guide for more

information about the Node Control Utility.

Error Conditions
FdsDeactivatePrimary() returns the following values:

-60 FDSERR_CONFIG

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

-380 FDSERR_NOT_RECONCILED

-560 FDSERR_SEQUENCE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// The following call to FdsDeactivatePrimary API must be issued
// from the Acting Primary Distributor
// ---
rc = FdsDeactivatePrimary ();
printf("FdsDeactivatePrimary completed with return code =

 (%d). \n", rc);
} // end if
else
{
 // else process errors
}

FdsDeleteBcastDomain()

Purpose
Delete a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsDeleteBcastDomain(const FDS_DOMAIN_NAME DomainName);

Parameters

DomainName ð input
Indicates the name of the broadcast domain to be deleted.

Remarks
FdsDeleteBcastDomain() can be called from an application running only on the

acting primary distributor. It deletes the broadcast domain indicated by

DomainName. This deletion causes all files and subdirectories distributed to the

broadcast domain to be made local (deleted from the distribution directory). All

files distributed to this domain must be closed when this function is called.

This API should not be used to delete a broadcast domain that begins with

the prefix FDS. The characters FDS are reserved. This function cannot be

used to delete a broadcast domain named MIRRORED.

Error Conditions
FdsDeleteBcastDomain() returns the following values:
-10 FDSERR_ACCESS
-60 FDSERR_CONFIG
-90 FDSERR_DISK
-120 FDSERR_DOMAIN_NAME
-130 FDSERR_DOMAIN_NOT_FOUND
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call

// Choose Domain Name to delete
FDS_DOMAIN_NAME DomainName = "DOMAINxx";
// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsDeleteBcastDomain API to delete DOMAINxx
// --
rc = FdsDeleteBcastDomain(DomainName);
printf("FdsDeleteBcastDomain completed with return code =
(%d) \n", rc);

} // end if
else
{
 // else process errors
}

FdsDeleteDomainNode()

Purpose
Remove a node from a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsDeleteDomainNode(const FDS_DOMAIN_NAME DomainName, const FDS_NODE_NAME
NodeID);

Parameters

DomainName ð input

Indicates the broadcast domain name from which you want to remove

the node.

NodeID ð input

Indicates the node ID of the node to be removed.

Remarks
FdsDeleteDomainNode() can be called from an application running on the

acting primary distributor only. It deletes a node from a broadcast domain. All

files distributed to the domain are deleted from the node.

Error Conditions
FdsDeleteDomainNode() returns the following values:

-60 FDSERR_CONFIG

-90 FDSERR_DISK

-120 FDSERR_DOMAIN_NAME

-130 FDSERR_DOMAIN_NOT_FOUND

-340 FDSERR_NODE_NAME

-350 FDSERR_NODE_NOT_FOUND

-360 FDSERR_NODE_TYPE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call FDS_DOMAIN_NAME DomainName = "DOMAINxx"; //
Domain Name to modify FDS_NODE_NAME NodeID = "Node_A"; // Node to Add to
Domain

// Initialize DDS. Could use FdsInit2() instead of FdsInit(). rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsDeleteDomainNode API to delete Node ID "Node_A" from
// DOMAINxx
// ---
rc = FdsDeleteDomainNode(DomainName, NodeID);
printf("FdsDeleteDomainNode completed with return

code = (%d) \n", rc);

} // end if else
{
 // else process errors

 }

FdsGetDomainList()

Purpose
Obtain the list of all the domains in the system.

Synt ax

#include <fds/dist.h>

long FdsGetDomainList(unsigned int *BufferSize, FDS_DOMAIN_NAME *DomainList
);

Parameters

BufferSize ð input/output

Input A pointer to the location where the size of the DomainList buffer

(in bytes) is stored.

Output

When this API completes successfully, the data in the location

pointed to by BufferSize is replaced with the size of the returned

data in bytes or the required buffer size in bytes if the input buffer

is too small. In the latter case, the list of domains is not returned.

DomainList ðOutput

Pointer to the location where the array of FDS_DOMAIN_NAME elements

is stored. Each FDS_DOMAIN_NAME structure contains a domain name.

Remarks
FdsGetDomainList() can be called from an application running on the acting

primary distributor only. It returns a list of all the domains in the system and their

update status.

Error Conditions
FdsGetDomainList() returns the following values:

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-60 FDSERR_CONFIG

-360 FDSERR_NODE_TYPE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_DOMAIN_NAME DomainList[2]; // List of Domains
unsigned int BufferSize = sizeof(DomainList); // Size of DomainList

// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();

// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsGetDomainList API to get a list of all the Domains

Chapter 6. Data Distribution 143
// --
rc = FdsGetDomainList(&BufferSize, DomainList);
printf("FdsGetDomainList completed with return code = (%d)\n"

" ----> Domain #1 = (%s) <---- \n"
" ----> Domain #2 = (%s) <---- \n",
rc,
DomainList[0], // Domain #1
DomainList[1]); // Domain #2

} // end if
else
{
// else process errors
}

FdsGetDomainNodes()

Purpose
Obtain the list of nodes that are in a broadcast domain.

Syntax

#include <fds/dist.h>

long FdsGetDomainNodes(const FDS_DOMAIN_NAME DomainName, unsigned int *BufferSize,
FDS_NODE_STATE *NodeList);

Parameters

DomainName ð input
Indicates the broadcast domain name that contains the nodes.

BufferSize ð input/output

Input The size of the NodeList buffer in bytes.

Output

The size of the returned data in bytes or the required buffer size in

bytes if the input buffer is too small. In the latter case, the list of

node IDs is not returned.

NodeList ð output

Pointer to the location where the array of FDS_NODE_STATE elements

is stored. Each FDS_NODE_STATE structure contains a node ID.

Remarks
FdsGetDomainNodes() can be called from an application running on the acting

primary distributor only. It returns the list of nodes that belong to a broadcast

domain.

Error Conditions
FdsGetDomainNodes() returns the following values:
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-60 FDSERR_CONFIG
-120 FDSERR_DOMAIN_NAME
-130 FDSERR_DOMAIN_NOT_FOUND
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
// Domain Name to query
FDS_DOMAIN_NAME DomainName = "DOMAINxx";
FDS_NODE_STATE NodeList[100]; // Node List for Domain
unsigned int BufferSize = sizeof(NodeList); // Size of NodeList
// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Call FdsGetDomainNodes API to get a list of all the Node IDs in
// DOMAINxx
// --
rc = FdsGetDomainNodes(DomainName, &BufferSize, NodeList);
printf("FdsDomainName completed with return code = (%d) \n"

" DomainName = (%s) \n"
" Node List: \n"
" NodeList[0] -- NodeID = (%s), state = (%d) \n"
" NodeList[1] -- NodeID = (%s), state = (%d) \n"
" NodeList[2] -- NodeID = (%s), state = (%d) \n"
" NodeList[3] -- NodeID = (%s), state = (%d) \n"
" NodeList[4] -- NodeID = (%s), state = (%d) \n",
rc,
DomainName,
NodeList[0].Name, NodeList[0].State, // Node_1
NodeList[1].Name, NodeList[1].State, // Node_2
NodeList[2].Name, NodeList[2].State, // Node_3
NodeList[3].Name, NodeList[3].State, // Node_4
NodeList[4].Name, NodeList[4].State); // Node_5

} // end if
else
{
 // else process errors
}

FdsQueryBackupState()

Purpose
Query the state of the backup distributor.

Syntax

#include <fds/dist.h>

long FdsQueryBackupState(int *State);

Parameters

State ð output

Pointer to the location of the state of the backup distributor. Possible

values are:

FDS_ACTIVE

Fully reconciled

FDS_JOINING

Reconciling

FDS_INACTIVE

Not online

Remarks
FdsQueryBackupState() can be called from an application that is running on

the primary distributor only.

Error Conditions
FdsQueryBackupState() returns the following values:
-60 FDSERR_CONFIG
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
int State = 0; // Initialize State
// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// The following call to FdsQueryBackupState API must be issued from
// the Acting Primary Distributor
// ---
rc = FdsQueryBackupState(&State);
printf("FdsQueryBackupState completed with return
code = (%d).\n", rc);

if (rc == FDS_SUCCESS)
{

switch (State)

{
case FDS_ACTIVE:
printf("... Backup State = FDS_ACTIVE ... \n");
break;
case FDS_JOINING:
printf("... Backup State = FDS_JOINING ... \n");
break;
case FDS_INACTIVE:
printf("... Backup State = FDS_INACTIVE ... \n");
break;
default:
printf("No state was returned from FdsQueryBackupState \n");
break;

} // end switch
} // end if

} // end if
else
{
// else process errors
}

FdsQueryDistribution()

Purpose
Query a distribution directory entry for a file or subdirectory.

Syntax

#include <fds/dist.h>

long FdsQueryDistribution(const char *OsPath, int *DirIndicator,
int *DomainType, FDS_DOMAIN_NAME
DomainName, int *DistFrequency,
int *Scope);

Parameters

OsPath ð input Indicates the file or subdirectory path name. OSPath can be a

logical name, but it must resolve to a file or subdirectory on the local node,

or to a retail path specification that includes either the role name or the

node ID of the acting primary distributor. See ñFile Names and Queue

Namesò for more information.

DirIndicator ð output

Indicates whether the entry refers to a file or a subdirectory. Possible

values are:

FDS_FILE

Indicates that the entry refers to a file

FDS_DIRECTORY

Indicates that the entry refers to a subdirectory

DomainType ð output

Indicates the domain type. Possible values are:

FDS_MIRRORED

Indicates that the domain type is a mirrored domain

FDS_BROADCAST

Indicates that the domain type is a broadcast domain

DomainName ð output

The broadcast domain name is returned if the entry is for a

broadcast domain. Otherwise, the value is undefined.

DistFrequency ð output

Indicates the distribution frequency. Possible values are:

FDS_DOU

Indicates distribute on update

FDS_DOC

Indicates distribute on close

Scope ð output

Indicates the scope qualifier. Possible values are:

FDS_SCOPE_FILE

Only the files in the directory are distributed

FDS_SCOPE_UNDEFINED_FOR_FILE

 FDS_FILE was specified for DirIndicator.

FDS_SCOPE_TREE

All files and subdirectories are distributed. See ñRestrictionsò

for information about specifying a scope for

FDS_SCOPE_TREE.

Remarks
FdsQueryDistribution() queries a distribution directory entry for a file or

subdirectory specified by OsPath.

Error Conditions
FdsQueryDistribution() returns the following values:
-60 FDSERR_CONFIG
-70 FDSERR_CORRUPT
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-410 FDSERR_OVERFLOW
-500 FDSERR_REMOTE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
int DirectoryIndicator = 0; // Directory Indicator
FDS_DOMAIN_NAME DomainName; // Domain Name
int DomainType = 0; // Domain Type
int DistributionFrequency = 0; // Distribution Frequency
int Scope = 0; // Scope
// Initialize DDS. Could use FdsInit2() instead of FdsInit().

rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// The following calls to FdsQueryDistribution API must be issued from
// the Acting Primary Distributor
// ---
// ---
// Query the Distribution of file "d:\dou\ itemrec.dat"
// ---
rc = FdsQueryDistribution("d:\ \dou\ \ itemrec.dat",

&DirectoryIndicator,
&DomainType,
DomainName,

&DistributionFrequency,
&Scope);

printf("FdsQueryDistribution completed with return code = (%d).\n"
" Directory Indicator = (%d)\n"
" Domain Type = (%d)\n"
" Domain Name = (%s)\n"
" Distribution Frequency = (%d)\n"
" Scope = (%d)\n",
rc,
DirectoryIndicator,
DomainType,
DomainName,
DistributionFrequency,
Scope);

// ---
// Query the Distribution of directory "d:\doc"
// ---
rc = FdsQueryDistribution("d:\ \doc\ \ ",

&DirectoryIndicator,
&DomainType,
DomainName,
&DistributionFrequency,
&Scope);

printf("FdsQueryDistribution completed with
return code = (%d).\n"
" Directory Indicator = (%d)\n"
" Domain Type = (%d)\n"
" Domain Name = (%s)\n"
" Distribution Frequency = (%d)\n"
" Scope = (%d)\n",
rc,
DirectoryIndicator,
DomainType,
DomainName,
DistributionFrequency,
Scope);

} // end if
else
{
 // else process errors
}

FdsSetDistribution()

Purpose
Modify the distribution characteristics of files and subdirectories.

Syntax

#include <fds/dist.h>

long FdsSetDistribution(const char *OsPath, int DirIndicator, int DomainType,
const FDS_DOMAIN_NAME DomainName, int DistFrequency,
int Scope);

Parameters

OsPath ð input Indicates the file or subdirectory path name. OSPath can be a

logical name, but it must resolve to a file or subdirectory on the local node,

or to a retail path specification that includes either the role name or the

node ID of the acting primary distributor. The resolved name, not the

logical name, is stored in the distribution directory (distribution

characteristics are associated with resolved-to names, not logical names).

See ñFile Names and Queue Namesò for more information.

Note: DDS supports the distribution of files up to a maximum size of 4 GB.

DirIndicator ð input

Indicates whether the entry refers to a file or subdirectory. Valid values

are:

FDS_FILE

Indicates that the entry refers to a file

FDS_DIRECTORY

Indicates that the entry refers to a directory

This characteristic cannot be changed for an existing distribution

directory entry.

DomainType ð input

Indicates the domain type. Valid values are:

FDS_MIRRORED

Indicates a mirrored domain.

FDS_BROADCAST

Indicates a broadcast domain. The file or subdirectory is

distributed to the acting backup distributor and all nodes in the

specified broadcast domain.

FDS_LOCAL

Indicates a local domain. The file or subdirectory is removed

from the distribution directory and all image copies are deleted.

Paths (the parent directory of a file or subdirectory) are not

deleted at image nodes. An attempt to change an individual file

to FDS_LOCAL is rejected if the file exists as part of a

distributed subdirectory.

For an existing entry in the distribution directory, this characteristic can

only be changed to FDS_LOCAL , which deletes the entry from the

distribution directory.

DomainName ð input

Indicates the broadcast domain name if the entry is for a broadcast

domain. This is the case whether the caller wants to add a distributed

object, modify the characteristics of an existing distributed object, or make

a distributed object non-distributed by setting DomainType to

FDS_LOCAL . This parameter is ignored if DomainType is

FDS_MIRRORED.

This characteristic cannot be changed for an existing distribution

directory entry.

DistFrequency ð input

Indicates the distribution frequency. Valid values are:

FDS_DOU

Indicates distribute on update

FDS_DOC

Indicates distribute on close

This characteristic can be changed for an existing distribution

directory entry.

Scope ð input

Indicates the scope qualifier. Valid values are:

FDS_SCOPE_FILE

Only the files in the directory are distributed.

FDS_SCOPE_TREE

All files and subdirectories are distributed. See ñRestrictionsò

for information about specifying a scope of

FDS_SCOPE_TREE.

FDS_SCOPE_UNDEFINED_FOR_FILE

 FDS_FILE was specified for DirIndicator.

This characteristic cannot be changed for an existing distribution

directory entry.

Remarks
FdsSetDistribution() updates a distribution directory entry for a file or

subdirectory specified by OsPath and distributes the file or subdirectory.

If OsPath specifies a file, the file must not be open. If OsPath specifies a

directory, the directory must not contain any open files, nor can any descendant

subdirectory contain any open files, even if the scope qualifier is

FDS_SCOPE_FILE.

Note: No file or directory in the directories where DDS is installed (or the

directory pointed to by the WorkDirectory configuration keyword) can be

distributed.

The file or subdirectory identified by OSPath must exist when this API is called.

One exception is that a distribution directory entry can be removed (the domain

type set to local), even if the corresponding file or subdirectory does not exist on

the acting primary distributor. Such a situation should not normally occur.

The distribution directory entry is deleted by data distribution when the
corresponding file or subdirectory is deleted.

If there is no previous entry in the distribution directory for OsPath, an entry is

created. Otherwise, the only modifications that can be made are changing the

domain type to FDS_LOCAL (remove the entry from the distribution directory) or

changing the distribution frequency.

There can be no more than one entry for a particular file or subdirectory in the

distribution directory. That is, a file or subdirectory can be distributed to no more

than one distribution domain. An entry for a file or subdirectory cannot be added to

the distribution directory if the file or subdirectory is contained in a directory that is

already distributed. An entry for a directory cannot be added to the distribution

directory if it contains a file that is already distributed.

In all valid cases where FDS_LOCAL is not specified for DomainType, the file is

distributed by this API to all nodes in the domain.

To force distribution for a particular file or subdirectory, query its directory entry

using FdsQueryDistribution() and pass the results to FdsSetDistribution(). If

FdsSetDistribution() is called for an existing entry and no attributes are changed,

the effect is the same as forcing the distribution of that file or subdirectory. The file

or subdirectory will be distributed to all nodes, even if the file or subdirectory is

already current on those nodes.

The root directory of a drive cannot be added to the distribution directory.

Error Conditions
FdsSetDistribution returns the following values:
-10 FDSERR_ACCESS
-60 FDSERR_CONFIG
-80 FDSERR_DIR_INDICATOR
-90 FDSERR_DISK
-110 FDSERR_DIST_FREQ
-120 FDSERR_DOMAIN_NAME
-130 FDSERR_DOMAIN_NOT_FOUND
-140 FDSERR_DOMAIN_TYPE
-170 FDSERR_EXISTS
-190 FDSERR_FILE_NAME
-200 FDSERR_FILE_NOT_FOUND
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-360 FDSERR_NODE_TYPE
-375 FDSERR_NOT_DISTRIBUTED
-410 FDSERR_OVERFLOW
-500 FDSERR_REMOTE
-555 FDSERR_SCOPE
-560 FDSERR_SEQUENCE

Examples
#include <stdio.h>

#include <fds/fds.h>
#include <fds/file.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
long FileHandle = 0; // Keyed File Handle
// In itialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// The following calls to FdsSetDistribution API must be issued from
// the Acting Primary Distributor
// --
// ---
// Create a keyed file to be distributed
// ---
rc = FdsCreateKeyedFile(&FileHandle,

"d:\ \dou\ \ itemrec.dat", // Keyed file to create
10, // Key Size
65, // Record Size
512, // Block Size
10, // Number of Blocks
0, // Randomizing Divisor
2, // Chaining Threshold
FDS_FILE_EXIST_REPLACE); // Create Flag

if (rc != FDS_SUCCESS)
{

printf("FdsCreateKeyedFile failed with return code = (%d).\n", rc);
return (-1);

} // end if
// --
// Close the file before distributing
// --
rc = FdsCloseKeyedFile(FileHandle, FDS_FILE_CLOSE_TYPE_FULL);
if (rc != FDS_SUCCESS)
{

printf("FdsCloseKeyedFile failed with return code = (%d).\n", rc);
return (-2);

} // end if
// --
// Now distribute a file to be Mirrored with a distribution type of
// distribute on update (DOU)
// --
rc = FdsSetDistribution("d:\ \dou\ \ itemrec.dat", // OS Path

FDS_FILE, // Distributed File
FDS_MIRRORED, // Mirrored Distribution
"DOMAINxx", // Domain name ignored
FDS_DOU, // Distribute on Update
FDS_SCOPE_FILE); // Scope ignored

printf("FdsSetDistribution completed with return code = (%d).\n",
rc);

// --
// Now distribute a directory in Broadcast Domain DOMAINyy with a
// distribution type of distribute on close (DOC)
// --

rc = FdsSetDistribution("d:\ \doc\ \ ", // OS Path Specification
FDS_DIRECTORY, // Distributed Directory
FDS_BROADCAST, // Broadcast Distribution
"DOMAINyy", // Broadcast Domain name
FDS_DOC, // Distribute on Close
FDS_SCOPE_FILE); // File Scope

printf("FdsSetDistribution completed with return code = (%d).\n",
rc);

} // end if
else
{
 // else process errors
}

FdsSetupDistMonitor()

Purpose
Prepare to receive notification of data-distribution events.

Syntax

#include <fds/dist.h>

long FdsSetupDistMonitor(const char *QName);

Parameters

QName ð input
Indicates the IPC queue name where the results are to be placed.

Remarks
FdsSetupDistMonitor() can be called from an application that is running on the

acting primary distributor or acting backup distributor only. It notifies the Data

Distribution component of an IPC queue that can be used for notification of data-

distribution, role-related state changes. This information is saved by the Data

Distribution component and control is returned.

The following messages are placed in the specified queue to indicate

data-distribution state changes:

¶ The local node is in transition to the acting primary distributor role.

¶ The local node is the acting primary distributor.

¶ The local node is in transition to the acting backup distributor role.

¶ The local node is the acting backup distributor.

One of these messages is immediately generated as the result of calling

FdsSetupDistMonitor.

Data Distribution does not perform validation on QName. If QName does

not identify a valid IPC queue, the notification is lost and no error is

returned.

Error Conditions
FdsSetupDistMonitor() returns the following values:
-60 FDSERR_CONFIG
-360 FDSERR_NODE_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/ipc.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long QueueHandle = 0; // Queue Handle
char ReadBuffer[100]; // Message from Read Queue
unsigned int BufferLength = sizeof(ReadBuffer); // Length of Message
long Timeout = 120; // Time out value
int MsgType; // Type of Message Read
FDS_DIST_STATE* DistStateptr; // Role State structure

// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

rc = FdsCreateQ("MyQueue", MaxQSize, &QueueHandle);
if (rc == FDS_SUCCESS)
{

// ---
// The following call to FdsSetupDistMonitor API must be issued from
// either the Acting Primary or the Acting Backup Distributor
// ---
rc = FdsSetupDistMonitor("MyQueue");
printf("FdsSetupDistMonitor completed with return code = (%d).\n", rc);
if (rc == FDS_SUCCESS)
{

// ---
// Read the message returned from calling FdsSetupDistMonitor
//
// The messages will be written to "MyQueue". To read the
// message in "MyQueue" use the FdsReadQ API. The message
// type for these messages is FDS_DIST_STATE_NOTIFY_MSG. See
// the FdsReadQ API for more information.
// ---
rc = FdsReadQ(QueueHandle, &BufferLength, ReadBuffer,

Timeout, &MsgType);
DistStateptr = (FDS_DIST_STATE*) ReadBuffer;
printf("MyQueue completed with return code = (%d).\n"

" ---- MyQueue contains: ---- \n"
" - Role State = (%d) \n"
" - NodeID = (%s) \n",
rc,
DistStateptr->RoleState,
DistStateptr->NodeID);

}

rc = FdsCloseQ(QueueHandle);
} // end if

} // end if
else
{
// else process errors
}

FdsSetupSyncIDNotify()

Purpose
Prepare to receive notification of file or directory synchronization.

Syntax

#include <fds/dist.h>

long FdsSetupSyncIDNotify(const FDS_SYNC_ID *SyncID, const char *QName);

Parameters

SyncID ð input
Indicates the synchronization ID.

QName ð input
Indicates the IPC queue name where the results are to be placed.

Remarks
FdsSetupSyncIDNotify() can be called from an application running on any node.

It notifies the Data Distribution component of a synchronization ID and IPC

queue name. This information is saved by Data Distribution and control is

returned to the caller.

When the file or directory on the local node, associated with synchronization ID

SyncID, has been brought to the state identified by SyncID, the Data Distribution

component writes a message with the synchronization ID to the queue specified

by QName. If the local node is already at this state when this API is called, or has

been at this state and has had additional updates applied, this message is written

immediately to the queue. If additional updates have been applied, the

SequenceNumber portion of the returned SyncID may be higher than the

SequenceNumber provided on the call to FdsSetupSyncIDNotify. See

ñFdsReadQ()ò

 for more information about the messages.

Data Distribution does not perform validation on QName. If QName does

not identify a valid IPC queue, the notification is lost and no error is

returned.

Using FdsCreateSyncID() and FdsSetupSyncIDNotify()

FdsCreateSyncID() is used to uniquely identify a specific set of updates to a

distributed sequential, keyed, or binary file. FdsSetupSyncIDNotify() is used

to determine when those updates have been distributed to a particular

node.

Consider the following example:

The application APPLA, which runs on the backup distributor, opens and
updates a file called FILE.DAT, which resides on the primary distributor. The
distribution frequency for FILE.DAT is distribute on update (DOU).

Note: Only the prime copy of a distributed file can be modified. The prime

copy of a distributed file resides on the acting primary distributor.

Another application, APPLB, runs on Subordinate 1, a subordinate node in the
domain. APPLB uses data from the image copy of FILE.DAT and needs to be
notified when the latest updates have been applied.

Figure 1 shows how APPLA issues a call to FdsCreateSyncID() to obtain the

synchronization identifier, sync_id, and sends it to APPLB (via IPC). APPLB

issues a call to FdsSetupSyncIDNotify() to receive notification when the

updates have been applied to the copy of FILE.DAT residing on the

Subordinate 1 node.

Figure 1. Using FdsCreateSyncID() and FdsSetupSyncIDNotify()

In Figure 1:

¶ APPLA on the backup distributor opens E:FILE.DAT on the primary distributor
and writes data to the file. Because the distribution frequency is distribute on
update, APPLA issues a call to FdsCreateSyncID() after the updates have

been made.

Note: If the distribution frequency for file.dat were distribute-on-close
(DOC), APPLA would first flush the file by calling FdsCloseKeyedFile() or
FdsFlushBinFile() and then calling FdsCreateSyncID().

¶ FdsCreateSyncID() returns a synchronization identifier, sync_id, which
uniquely identifies these changes to FILE.DAT. APPLA is responsible for
sending sync_id (via IPC) to any other programs that may need it.

¶ APPLB on Subordinate 1 sets up a queue called my_queue. (This queue can
be used by APPLB to receive a variety of messages.) When APPLB receives
sync_id from APPLA, APPLB issues a call to
FdsSetupSyncIDNotify(my_queue, sync_id). After DDS applies the updates
to FILE.DAT on Subordinate 1, a notification message is written to
my_queue.

APPLB, based on the parameters passed to FdsReadQ(),
determines how many times my_queue will be queried and how
long to wait for each query.

Note: The calling program must ensure that the correct queue name is passed

to FdsSetupSyncIDNotify(). If the queue name is incorrect, no error is

returned.

Error Conditions
FdsSetupSyncIDNotify() returns the following values:
-60 FDSERR_CONFIG
-570 FDSERR_SYNCID

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/ipc.h>
#include <fds/dist.h>
#include <fds/errno.h>

long rc; // Return from API Call
FDS_SYNC_ID SyncID; // SyncID received from the primary
long QueueHandle = 0; // QueueHandle
unsigned long MaxQSize = 500; // Maximum Queue size

// Initialize DDS. Could use FdsInit2() instead of FdsInit().
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// The following call to FdsSetupSyncIDNotify API can be invoked from
// an application running on any node; however, it is usually called
// on image nodes for notification of file updates on the primary.
// ---
// ---
// A queue was created on this node and the SyncID generated from
// the FdsCreateSyncID call has been read from it. The distribute

// on update file, "d:\dou\ itemrec.dat", was opened on the primary.
// (See the example in the FdsCreateSyncID API for more information
// about what occurs on the primary node.)
// ---
// --
// Create "MyQueue" for SyncID Notify
// --
rc = FdsCreateQ("MyQueue", MaxQSize, &QueueHandle);
if (rc == FDS_SUCCESS)
{

// --
// Call FdsSetupSyncIDNotify API to be notified when changes
// to "d: \dou\ itemrec.dat" are distributed. The input SyncID
// parameter was sent to this node by the application on
// the primary via a queue.
//
// The messages will be written to "MyQueue". To read the
// message in "MyQueue" use the FdsReadQ API. The message type
// for these messages is FDS_DIST_SYNC_NOTIFY_MSG. See the
// FdsReadQ API for more information.
// ---
rc = FdsSetupSyncIDNotify (&SyncID, "MyQueue");
printf("FdsSetupSyncIDNotify completed with return code = (%d).\n",
rc);

} // end if
} // end if
else
{
 // else process errors
}

Chapter 7. Name Services
This chapter describes the Name Services component. It also describes the

following APIs, which are available for the Name Services component:

¶ FdsChangeLogicNm() ð Change a logical name

¶ FdsCreateLogicNm() ð Create a logical name

¶ FdsDeleteLogicNm() ð Delete a logical name

¶ FdsResolveLogicNm() ð Resolve a logical name

¶ FdsResolveRoleNm() ð Resolve a role name

¶ FdsSetResetRole() ð Assume or relinquish a role name

¶ FdsVerifyRole() ð Verify that the local node is acting a role

The Name Services component provides a name-resolution capability,

allowing applications to use logical names instead of hard-coded file names,

IPC queue names, and node IDs. These logical names are dynamically

resolved when the application runs.

Some names are rarely changed, such as the name of a configuration file. While

this name is not likely to change, it is still desirable to avoid using the name in an

application program. The use of a logical name allows the file name to be

changed without having to rebuild the application. A logical name has the

following format:

<name>

Where name is 1 to FDS_MAX_LOGICAL_NAME_SIZE-2 characters and

the less-than and greater-than characters (< and >) are required delimiters.

Others names are more dynamic, for example, the node ID of the primary

distributor. This name changes whenever the backup distributor takes over for

the primary distributor. In this case, a role (the primary distributor) is assumed by

a particular node. A logical name can be used to identify this role, and is termed

the role name. A role name has the following format:

<name::>

Where name is 1 to 8 characters, the less than and greater than characters (<

and >) are required delimiters, and double colons (::) indicate that this is a role

name.

An instance of the Name Services component exists on each node. Each

instance maintains a cache of:

¶ Logical names read from the logical-names file at initialization

¶ Logical names and role names that have been set for the local node via an
API

¶ All role names that have previously been resolved at the local node

This cache of logical names is unique to each node and global to all processes on

a node. Therefore, any application process on the local node using a logical name

will have the name resolved to the same string, whereas an application on a

remote node could have the same logical name resolve to a different string. For

example:

Resolved Name Resolved Name Resolved Name
Logical Name on Node 1 on Node 2 on Node 3
------------------- --------------------- --------------------- ---------------------
drive C: D: C:

Creating Logical Names
Logical names are created through the DDS Configuration and Response File

Utility or the FdsCreateLogicNm() API. The logical name represents a string of

characters defined by the person or process creating the logical name. This string

is called the resolved name. The resolved name can contain other logical names.

If a resolved name contains a logical name, the logical name must be delimited by

the less-than and greater-than characters (< and >). For example, the following

logical names definitions are valid:

Logical Name Resolved Name
------------------- ----------------------
<drive> C:
<prices> \dept72\prices.dat
<pricefile1> <drive><prices>
<pricefile2> <FDSFDXAP::><drive><prices>
<badcheck> \secur\badcheck.dat
<fileserver> fsnode::
<badcheckfile1> <drive><badcheck>
<badcheckfile2> <fileserver><drive><badcheck>

Note: FDSFDXAP:: is the reserved role name for the acting primary

controller. Because it is a role name, it is also a logical name and

must be delimited by the less than and greater than characters (<

and >).

In the previous example, the double colons (::) are required delimiters for the

resolved name of the logical name, fileserver. These delimiters separate the

node ID from the path name.

The same results could have been achieved by the following logical-

name definitions:

Logical Name Resolved Name

 ------------------ ---------------------

<fileserver> fsnode

 <badcheckfile2> <fileserver>::<drive><badcheck>

There are two types of logical names for DDS:

Persistent logical names

Persistent logical names are retained in memory across a restart of

DDS. Persistent logical names must be defined using the DDS

Configuration and Response File Utility. They are stored in the

logical-names file and loaded into memory when DDS is initialized.

Refer to the IBM Distributed Data Services/Controller Services Feature for

Windows Installation and Configuration Guide for information about

creating logical names to be used with IPC and File Services.

Temporary logical names

Temporary logical names are not retained across a restart of DDS.

Temporary logical names are defined by the FdsCreateLogicNm()

API, and are created by the application for special purposes. They

are stored in memory and are lost when an IPL is performed at a

node or when DDS is restarted.

Logical-Names File

The logical-names file contains the persistent logical names that are to be

initially loaded into the Name Services cache. This file can be changed using the

DDS Configuration and Response File Utility. Refer to the IBM Distributed Data

Services/Controller Services Feature for Windows Installation and Configuration

Guide for more information about the management and distribution of the

logical-names file. DDS must be restarted on a node for the logical name

changes to take effect for that node.

Changing Logical Names
Persistent logical-name definitions contained in the logical names file are changed

using the DDS Configuration and Response File Utility. DDS must be restarted on

a node for the logical name changes to take effect for that node. Refer to the IBM

Distributed Data Services/Controller Services Feature for Windows Installation and

Configuration Guide for more information about the Configuration and Response

File Utility.

Persistent and temporary logical names stored in memory are changed using

the FdsChangeLogicNm() API. This API has no effect on the persistent logical-

name definitions contained in the logical names file. These changes are not

retained across IPLs or restarts of DDS. The effect of this API is the same as

deleting an existing logical name and creating a new one.

Deleting Logical Names
Persistent logical-name definitions contained in the logical names file are deleted

using the DDS Configuration and Response File Utility. DDS must be restarted on

a node for the logical-name changes to take effect for that node. Refer to the IBM

Distributed Data Services/Controller Services Feature for Windows Installation and

Configuration Guide for more information about the Configuration and Response

File Utility.

Persistent and temporary logical names stored in memory are deleted using the

FdsDeleteLogicNm() API. This API has no effect on the persistent logical-name

definitions contained in the Logical-Names File. These deletions are not

retained across IPLs or restarts of DDS.

Logical Name Resolution
When the application calls the FdsResolveLogicNm() API, the Name Services

component resolves any logical names that appear in the input string. The only

exception to this is when a remote role name or node ID is encountered. In that

case, this API returns the error -500 FDSERR_REMOTE. Because this resource is

remote, it must be resolved on the remote node indicated by the role name or

node ID. Your applications must use the IPC component or the File Services

component to access the remote resource represented by this logical name.

The logical names in the input string to be resolved must be delimited by the less-

than and greater-than characters (< and >). The following table shows how the

FdsResolveLogicNm() API resolves the logical names shown in ñCreating Logical

Namesò.

In the previous example, the logical names <badcheckfile2> and <pricefile2> contain

an imbedded role name or node ID. Therefore, they must be used with the IPC

component or the File Services component, and cannot be resolved directly by the

application.

A null node ID indicates that the logical name resolved locally.

Creating Role Names
Although role names are conceptually logical names for a particular node, they are

not created by the FdsCreateLogicNm() API, nor can they be defined in the logical

names file (fdsln.ln). They are created by DDS or by your application by calling the

FdsSetResetRole() API on the node that is to assume the role.

Your application can create roles for its own use. For example, if you have one

node perform all of the communications with outside networks, you could assign it

the role name <GATEWAY::>. Role names that begin with FDS are reserved.

Role Name Resolution
When the application calls an IPC or File Services API using a logical name, the

Name Services component is indirectly called to resolve the logical name. If a

role name is found, role name resolution is performed for the application by DDS.

The application does not need to know the details of how a role is resolved.

However, application programmers should be aware that if a logical name contains

a role name, it is possible that some network communication might occur to

resolve the role. Under normal circumstances, the resolution of a role name should

take no longer than that of any other logical name. Under some circumstances,

however, the role-name information in the Name Services cache might become

outdated and have to be refreshed. If the application programmer needs to resolve

a role to a node ID, the FdsResolveRoleNm() should be used.

Verifying Role Names
An application can determine whether it is running on a node that is acting a role
by using the FdsVerifyRole() API. If this API returns 0 (zero), the role name is
local. If it returns the error -550 FDSERR_ROLE_NOT_FOUND, the role name is
not local.

FdsChangeLogicNm()

Purpose
Change a logical name.

Syntax

#include <fds/names.h>

long FdsChangeLogicNm(const char *LogicalName,
const char *ResolvedName);

Parameters

LogicalName ð input

Specifies the logical name to be changed in the Name Services

component. This parameter points to a null-terminated string. The string

length, including the less than and greater than (< and >) delimiters, must

not be more than the value of FDS_MAX_LOGICAL_NAME_SIZE. Logical

names cannot be a null string and cannot start with the prefix FDS. Logical

names cannot end with two colons (::). The logical name must be

delimited by the less-than and greater-than characters (< and >).

ResolvedName ð input

Specifies the string that the logical name represents. This parameter

points to a null-terminated string. The string length must not be more

than the value of FDS_MAX_RESOLVED_NAME_SIZE. Resolved

names cannot be a null string. The name to be resolved can have other

logical names imbedded; if it does, the logical name must be delimited by

the less-than and greater-than characters (< and >).

Remarks
FdsChangeLogicNm changes the resolved name for a logical name. This API

only affects the Name Services component on the local node. It does not

change a logical name in the logical names file. Therefore, persistent logical

names that are listed in the logical names file are reset to their original values

when DDS is restarted.

Applications can use this API to change the resolved name of temporary and

unreserved persistent logical names in the Name Services component on the local

node. The DDS Configuration and Response File Utility must be used to

permanently change the persistent logical names. Refer to the IBM Distributed

Data Services/Controller Services Feature for Windows Installation and

Configuration Guide for more information about permanently changing persistent

logical names.

Error Conditions
FdsChangeLogicNm returns the following values:

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

-510 FDSERR_RESOLVED_NAME

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Change the definition of <drive> in memory. This does not
// affect any defintion in the logical names file.
// --
rc = FdsChangeLogicNm("<drive>", "e:");
printf("FdsChangeLogicNm completed with return code = (%d).\n",

 rc);
} // end if
else
{
 // else process errors
}

FdsCreateLogicNm()

Purpose
Create a logical name.

Syntax

#include <fds/names.h>

long FdsCreateLogicNm(const char *LogicalName, const char
*ResolvedName);

Parameters

LogicalName ð input

Specifies the logical name to be created in the Name Services

component. This parameter points to a null-terminated string. The string

length, including the less than and greater than (< and >) delimiters, must

not be more than the value of FDS_MAX_LOGICAL_NAME_SIZE. A

logical name cannot be a null string and cannot start with the prefix FDS.

A logical name cannot contain two consecutive colons (::). The logical

name must be delimited by the less than and greater than characters (<

and >). These delimiters (< and >) may not be imbedded within the

logical name.

ResolvedNameð input

Specifies the string that the logical name represents. This parameter

points to a null-terminated string. The string length must not be more

than the value of FDS_MAX_RESOLVED_NAME_SIZE. A resolved

name cannot be a null string. The name to be resolved can have other

logical names imbedded. If it does, the logical name must be delimited by

the less than and greater than characters (< and >).

Remarks
FdsCreateLogicNm() adds a temporary logical name to the Name Services

component. This API affects only the Name Services component on the local

node. Applications can call this API to create a logical name to be used in

resolving file names, IPC queue names, or other special names. Temporary logical

names are created in memory and are not persistent across IPLs or restarts of

DDS. Persistent logical names must be created using the DDS Configuration and

Response File Utility.

Logical names are used by the Name Services component to resolve names.

Refer to the IBM Distributed Data Services/Controller Services Feature for

Windows Installation and Configuration Guide for more information about creating

logical names to be used with IPC and File Services.

Error Conditions
FdsCreateLogicNm() returns the following values:
-170 FDSERR_EXISTS
-300 FDSERR_LOGICAL_NAME
-510 FDSERR_RESOLVED_NAME

Examples
#include <stdio.h>

#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Create a temporary logical name for the drive
// ---
rc = FdsCreateLogicNm("<drive>", "d:");
printf("FdsCreateLogicNm completed with return code = (%d).\n",

 rc);
// --
// Create a temporary logical Nm for the Nm of the price file
// --
rc = FdsCreateLogicNm("<prices>", "\ \ registerdata\ \prices.dat");
printf("FdsCreateLogicNm completed with return code = (%d).\n",

rc);
// ---
// Create a temporary logical Nm for the price file
// --
rc = FdsCreateLogicNm("<pricefile>", "<drive><prices>");
printf("FdsCreateLogicNm completed with return code = (%d).\n",

rc);
// --
// Create a temporary logical Nm for the master price file
// on the primary controller using role Nm <FDSFDXAP::>
// --
rc = FdsCreateLogicNm("<masterpricefile>",

 "<FDSFDXAP::><drive><prices>");
printf("FdsCreateLogicNm completed with return code = (%d).\n",
 rc);
// ---
// Create a temporary logical Nm for the price file on
// node REG51
// ---
rc = FdsCreateLogicNm("<term51pricefile>",

"REG51::<drive><prices>");
printf("FdsCreateLogicNm completed with return code = (%d).\n",

rc);
} // end if
else
{
// else process errors
}

FdsDeleteLogicNm()

Purpose
Delete a logical name.

Syntax

#include <fds/names.h>

long FdsDeleteLogicNm(const char *LogicalName);

Parameters

LogicalNameð input

Specifies the logical name to be deleted from the Name Services

component. This parameter points to a null-terminated string. The string

length, including the less than and greater than (< and >) delimiters, must

not be more than the value of FDS_MAX_LOGICAL_NAME_SIZE. A

logical name cannot be a null string and cannot start with the prefix FDS.

A logical name cannot end with two colons (::). The logical name must be

delimited by the less-than and greater-than characters (< and >).

Remarks
FdsDeleteLogicNm() deletes a logical name from the Name Services component.

This API affects only the Name Services component on the local node. This API

does not delete a logical name from the logical-names file. Therefore, persistent

logical names listed in the logical-names file are added back to the Name

Services component when DDS is restarted.

Applications can use this API to remove temporary and unreserved persistent

logical names from the Name Services component on the local node. The

DDS Configuration and Response File Utility must be used to permanently

remove persistent logical names. Refer to the IBM Distributed Data

Services/Controller Services Feature for Windows Installation and

Configuration Guide for more information about removing persistent logical

names.

Error Conditions
FdsDeleteLogicNm() returns the following values:

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

Exampl es
#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Delete the definition of <drive> in memory. This does not
// affect any defintion in the logical names file.
// --
rc = FdsDeleteLogicNm("<drive>");
printf("FdsDeleteLogicNm completed with return code = (%d).\n",

 rc);

} // end if
else
{
 // else process errors
}

FdsResolveLogicNm()

Purpose
Resolve a logical name.

Syntax

#include <fds/names.h>

long FdsResolveLogicNm(const char *InputString, char *OutputString, unsigned int
*OutputStringLen);

Parameters

InputString ð input

Points to the null-terminated input string that is to be resolved.

Imbedded logical names must be delimited by the less-than and

greater-than characters (< and >).

OutputString ð output

Points to the buffer where the resolved string will be stored.

OutputStringLen ð input/output

Input A pointer to the location where the length of the buffer

 parameter is 0 (zero) when the API is called, the error

-20_ADDRESS will be returned.

 Output

When this API completes successfully, the data in the location

pointed to by OutputStringLen is replaced with the length of the

null-terminated string placed in OutputString. This length

includes the null terminator.

If this API returns the error -40 FDSERR_BUFFER_SIZE,

this parameter is set to the required buffer size.

Remarks
FdsResolveLogicNm() submits a string to the Name Services component for

resolution. This API provides a simple, string-substitution function. It does not

allow resolution of remote role names or node IDs. All imbedded logical names

are resolved from left to right. If an undefined logical name is encountered, the -

310 FDSERR_LOGICAL_NAME_NOT_FOUND error is returned.

If a remote role name or node ID is encountered, this API returns the -500

FDSERR_REMOTE error because the imbedded role name or node ID

indicates that this resource is remote; the resource must be resolved on the

remote node indicated by the role name or node ID. Your applications must

use IPC or File Services to access the remote resource represented by this

logical name.

Because the resource is local, resolution will If a local role name or

node ID is encountered, it is resolved to a null string because the

imbedded role name or node ID indicates that this resource is

local. continue until complete or until an error is encountered. In the

case where InputString resolves to only a local node ID, the buffer

pointed to by OutputString will contain a null string.

The logical names in the input string to be resolved must be

delimited by the less-than and greater-than characters (< and >). If

no logical name is found in InputString, the string is copied to the

buffer pointed to by OutputString.

To determine the local node ID, use the FdsQueryConfig() API.

Error Conditions
FdsResolveLogicNm() returns the following values:
-40 FDSERR_BUFFER_SIZE
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-410 FDSERR_OVERFLOW
-500 FDSERR_REMOTE

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
char OutBuffer[500]; // Resolve name buffer
unsigned int OutBufferSize = sizeof(OutBuffer); // Size of OutBuffer
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Create a temporary logical name for the drive
// --
rc = FdsCreateLogicNm("<drive>", "d:");
// --
// Create a temporary logical Nm for the Nm of the price file
// --
rc = FdsCreateLogicNm("<prices>", "\ \ registerdata\ \prices.dat");
// --
// Create a temporary logical Nm for the price file
// --
rc = FdsCreateLogicNm("<pricefile>", "<drive><prices>");
// --

// Create a temporary logical Nm for the master price file
// on the primary controller using role Nm <FDSFDXAP::>
// --
rc = FdsCreateLogicNm("<masterpricefile>",
"<FDSFDXAP::><drive><prices>");
// --
// Create a temporary logical Nm for the price file on
// node REG51
// --
rc = FdsCreateLogicNm("<term51pricefile>",
"REG51::<drive><prices>");
// --
// Change the definition of <drive> in memory. This does not
// affect any defintion in the logical names file.
// --
rc = FdsChangeLogicNm("<drive>", "e:");
// --
// Resolve the logical name for <prices>
// --
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<prices>", OutBuffer, &OutBufferSize);
printf("<prices> resolves to = (%s)\n", OutBuffer);
// --
// Resolve the logical name for <pricefile>
// --
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<pricefile>", OutBuffer, &OutBufferSize);
printf("<pricefile> resolves to = (%s)\n", OutBuffer);
// --
// Resolve the logical name for <masterpricefile>
// --
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<masterpricefile>", OutBuffer,
&OutBufferSize);
if (rc == FDSERR_REMOTE)

printf("<masterpricefile> refers to a remote file. "
"Use file services to access it\n");

else
printf("<masterpricefile> resolves to = (%s)\n", OutBuffer);

// --
// Resolve the logical name for <term51pricefile>
// --
OutBuffer[0] = 0;
OutBufferSize = sizeof(OutBuffer);
rc = FdsResolveLogicNm("<term51pricefile>", OutBuffer,
&OutBufferSize);
if (rc == FDSERR_REMOTE)

printf("<term51pricefile> refers to a remote file. "
"Use file services to access it\n");

else
printf("<term51pricefile> resolves to = (%s)\n", OutBuffer);

} // end if
else
{
 // else process errors

}

The output of this code on a machine that is acting as the role <FDSFDXAP::>
and
has a node ID of REG51 is:
<prices> resolves to \ registerdata\prices.dat
<pricefile> resolves to e:\ registerdata\prices.dat
<masterpricefile> resolves to e:\ registerdata\prices.dat
<term51pricefile> resolves to e:\ registerdata\prices.dat

The output of this code on a machine that is not acting as the role <FDSFDXAP::>
and does not have a node ID of REG51 is:
<prices> resolves to \ registerdata\prices.dat
<pricefile> resolves to e:\ registerdata\prices.dat
<masterpricefile> refers to a remote file. Use file services to access.
<term51pricefile> refers to a remote file. Use file services to access.

FdsResolveRoleNm()

Purpose
Resolve a role to a node ID.

Syntax

#include <fds/names.h>

long FdsResolveRoleNm(FDS_ROLE_NAME RoleName, int SeekMethod,
FDS_NODE_NAME *NodeID);

Parameters

RoleName ð input

Points to a null-terminated string of the role name to be resolved. The

role name must contain double colons (::) and cannot begin with the

characters FDS. The role name must be delimited by the less-than and

greater-than characters (< and >).

SeekMethod ð input

Indicates where to look for the role name. This parameter is required.

Valid values are:

FDS_CACHE_ONLY

 Search cache on the local machine only.

FDS_NETWORK_ONLY

Query all nodes in the DDS system.

FDS_CACHE_FIRST

Search cache on the local machine first. If no match is found,

query all nodes in the DDS system.

NodeID ð output

 Points to the location where the node ID string is stored.

Remarks
FdsResolveRoleNm() resolves a role to a node ID using cache, querying all

nodes in the DDS system, or both. The SeekMethod parameter controls how the

role resolution is done.

Local roles will always resolve to the local node ID regardless of the value of

the SeekMethod parameter.

Error Conditions
FdsResolveRoleNm() returns the following values:

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

-558 FDSERR_SEEK_TYPE

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
FDS_NODE_NAME OutBuffer; // Resolve role name buffer
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Resolve role name for <MyRole::> using only the cache
// --
rc = FdsResolveRoleNm("<MyRole::>", FDS_CACHE_ONLY, &OutBuffer;);
switch (rc)
{

case FDS_SUCCESS:
printf("<MyRole::> resolves to (%s).\n", OutBuffer);
break;
case FDSERR_ROLE_NOT_FOUND:
printf("The role name was not found.\n");
break;
case FDSERR_ROLE_NAME:
printf("The role name syntax is invalid.\n");
break;
default:
printf("FdsResolveRoleNm completed with return code = (%d).\n", rc);
break;

}
// --
// Resolve role name for <MyRole::> by querying all nodes in the
// system to determine whether the role still exists
// --
rc = FdsResolveRoleNm("<MyRole::>", FDS_NETWORK_ONLY, &OutBuffer;);
switch (rc)
{

case FDS_SUCCESS:
printf("<MyRole::> resolves to (%s).\n", OutBuffer);
break;
case FDSERR_ROLE_NOT_FOUND:
printf("The role name was not found.\n");
break;
case FDSERR_ROLE_NAME:

printf("The role name syntax is invalid.\n");
break;
default:
printf("FdsResolveRoleNm completed with return code = (%d).\n", rc);
break;

}
// --
// Resolve role name for <MyRole::> using the cache first. If the
// name is not in cache, query all nodes in the system to
// determine whether the role still exists
// --
rc = FdsResolveRoleNm("<MyRole::>", FDS_CACHE_FIRST, &OutBuffer;);
switch (rc)
{

case FDS_SUCCESS:
printf("<MyRole::> resolves to (%s).\n", OutBuffer);
break;
case FDSERR_ROLE_NOT_FOUND:
printf("The role name was not found.\n");
break;
case FDSERR_ROLE_NAME:
printf("The role name syntax is invalid.\n");
break;
default:
printf("FdsResolveRoleNm completed with return code = (%d).\n", rc);
break;

}
} // end if
else
{
// else process errors
}

The output of this code when role <MyRole::> exists on node MYSERVER and the
local machineôs cache does not have an entry for <MyRole::> is:
The role name was not found.
<MyRole::> resolves to MYSERVER.
<MyRole::> resolves to MYSERVER.

If this code is run a second time, the output will be different because the local
machineôs cache is updated whenever a role is discovered. The output for the
second run is:
<MyRole::> resolves to MYSERVER.
<MyRole::> resolves to MYSERVER.
<MyRole::> resolves to MYSERVER.

If this code is run when MYSERVER is down and the local machineôs cache has
an
entry for <MyRole::> set to MYSERVER, the output is:
<MyRole::> resolves to MYSERVER.
The role name was not found.
<MyRole::> resolves to MYSERVER.

FdsSetResetRole()

Purpose
Assume or relinquish a role name.

Syntax

#include <fds/names.h>

long FdsSetResetRole(FDS_ROLE_NAME RoleName, int Flag);

Parameters

RoleName ð input

Points to a null-terminated string of the role name to be set. The role

name must contain double colons (::) and cannot begin with the

characters FDS. The role name must be delimited by the less-than and

greater-than characters (< and >). This parameter cannot be a logical

name.

Flag ð input

Indicates whether the node is acting a role. One of the following

attributes must be chosen:

FDS_RESET_ROLE

The node no longer has a role.

FDS_SET_ROLE

The node has assumed a role.

Remarks
If the Flag parameter is set to FDS_SET_ROLE, this API indicates to the Name

Services component that the local node has assumed a role. As a result, strings

containing the role name specified by the RoleName parameter and passed to

IPC or File Services anywhere in the system will resolve to this node.

If the Flag parameter is set to FDS_RESET_ROLE, this API indicates to the

Name Services component that the local node is no longer acting the role

specified by RoleName.

The Name Services component does not attempt to prevent role conflicts. The

application must ensure that two nodes in the same system are not acting the

same role concurrently.

When a role is assumed on a node, DDS creates a thread to periodically

announce, via a broadcast message, that the new role has been assumed. This

thread exists for the announcement period or until the role is relinquished. If your

application sets many roles in a short period of time, you may find it necessary to

increase the number of threads available to the operating system.

Error Conditions
FdsSetResetRole() returns the following values:

-170 FDSERR_EXISTS

-210 FDSERR_FLAG

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples

#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Assume the role <MyRole::> on this machine
// --
rc = FdsSetResetRole("<MyRole::>", FDS_SET_ROLE);
// --
// Check that <MyRole::> is set to this machine
// --
rc = FdsVerifyRole("<MyRole::>");
if (FDS_SUCCESS == rc)
{

printf("Role <MyRole::> is local\n");
}
else
{

printf("Role <MyRole::> is remote \n");
}
// --
// Relinquish the role <MyRole::> on this machine
// --
rc = FdsSetResetRole("<MyRole::>", FDS_RESET_ROLE);

} // end if
else
{
// else process errors
}

The output of this code is:
Role <MYROLE::> is local

FdsVerifyRole()

Purpose
Verify that the local node is acting a role.

Syntax

#include <fds/names.h>

long FdsVerifyRole(FDS_ROLE_NAME RoleName);

Parameters

RoleName ð input

Points to a null-terminated string of the role name to be verified. The role

name must contain double colons (::) and must be delimited by the less-

than and greater-than characters (< and >).

Remarks
FdsVerifyRole() allows an application to determine whether it is running on a node

that is acting a specified role. If this API returns 0 (zero), the role name is local. If it

returns the error -550 FDSERR_ROLE_NOT_FOUND, the role name is not local.

Error Condition s
FdsVerifyRole() returns the following values:

-540 FDSERR_ROLE_NAME

-550 FDSERR_ROLE_NOT_FOUND

Examples
#include <stdio.h>
#include <fds/fds.h>
#include <fds/names.h>
#include <fds/errno.h>

long rc = 0; // Return from API call
// Initialize DDS. Could use FdsInit2() instead of FdsInit()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Relinquish the role <MyRole::> on this machine
// --
rc = FdsSetResetRole("<MyRole::>", FDS_RESET_ROLE);
// --
// Check that <MyRole::> is set to this machine
// --
rc = FdsVerifyRole("<MyRole::>");
if (FDS_SUCCESS == rc)

printf("Role <MyRole::> is local\n");
 else

 printf("Role <MyRole::> is remote\n");
} // end if
else
{
 // else process errors
}

The output of this code is:
Role <MYROLE::> is remote

Chapter 8. Interprocess Communication
The Interprocess Communication (IPC) component provides a set of APIs to

facilitate the exchange of information between applications at local nodes and

remote nodes. The information is exchanged in the form of messages. The IPC

component maintains a message queue in which messages accumulate and

from which messages can be removed. Message queues can be accessed

through the IPC APIs.

The IPC APIs for receiving messages are:

¶ FdsCloseQ() ð Close a queue handle

¶ FdsCreateQ() ð Create and open a queue on the local node

¶ FdsLockQ() ð Lock a queue

¶ FdsOpenQ() ð Open a queue on the local or remote node

¶ FdsPurgeMsg() ð Purge the next message in the queue

¶ FdsQu eryQ() ð Query information about a local queue

¶ FdsReadQ() ð Read the next message from a queue

¶ FdsUnlockQ() ð Unlock a locked queue

The IPC APIs for sending messages using point-to-point messaging are:

¶ FdsCloseQ() ð Close a queue handle

¶ FdsOpenQ() ð Open a queue on the local or remote node

¶ FdsWriteQ() ð Write a message to a queue

See ñWriting Messages to Queuesò for a description of point-to-point messaging.

The IPC API for sending messages using broadcast messaging is

FdsBroadcastQ(). See ñWriting Messages to Queuesò for a description of

broadcast messaging.

The messages contained in message queues are application messages. There

is no fixed format for messages being written to and read from queues, and the

IPC component does not interpret messages in any way.

An application must use the IPC component to create at least one queue for

receiving input messages. The name of the queue can be a DDS logical name,

and is required to be unique within the local node only. Once a queue is created,

other local and remote applications can write messages to that queue.

Applications do not need to detect whether another application is local or remote

before writing a message to a queue.

When a queue is created, the returned queue handle has read/write

permission, which can be used in all other IPC APIs that require a queue

handle.

Writing Messages to Queues
You can write messages either to a single node or to a set of nodes.

Writing Messages to a Single Node

Writing messages to a single node is called point-to-point messaging.

Point-to-point messaging is a reliable method for sending messages.

This method allows the application to write a message to a single

queue on a single node within each FdsWriteQ() request.

The application must open the queue before writing a message to the
queue, and must identify the node ID where the queue is located. When a
queue is opened on a remote node, the IPC component locates the node,
establishes a session with it, and saves information about it and the
NetBIOS session or TCP/IP connection that was used to communicate
with it.

A unique queue handle is returned. All messages that are written to

the queue using this queue handle are sent to the remote node over

the connection that was established during the FdsOpenQ() request.

In addition, because the node ID uniquely identifies a single node, the

IPC component provides:

¶ Confirmation that a message has been successfully delivered to

the destination node. (Retries are performed if necessary by the

IPC component before returning to the calling application.)

¶ Confirmation that a message has been successfully delivered to the

destination node and has been written to the destination queue.

(Retries are performed if necessary by the IPC component before

returning to the calling application.)

¶ Notification if communication with the node fails or if the queue is

deleted (closed by the owner).

¶ Confirmation that the destination node is still acting

the role that was specified during the FdsOpenQ()

request.

If a single message needs to be sent to a queue that exists on multiple

nodes, point-to-point messaging requires that the application open the

queue on each of the nodes and then call the IPC component to send

the message to each unique node. Alternatively, you can use the

broadcast messaging method described below.

Writing Messages to a Set of Nodes

Writing a single message to a set of nodes is called broadcast

messaging. The set of nodes to which the message is sent must be

defined as a broadcast domain.

This method does not require the application to open a queue before

writing a message; nor does it require the application to specify the

unique node ID of the node or nodes where the queue exists. The

application must only specify the broadcast domain name and the queue

name. See Chapter 6. Data Distribution for more information about how to

create the broadcast domain name.

When the message is sent, it is transmitted to all IPC nodes in the

system. At each IPC node that receives the message, the message is

discarded if the node ID is not defined as part of the specified broadcast

domain, or if the specified queue does not exist, is full, or is locked on

that node.

Note: Broadcast messaging does not provide confirmation of a

successful write; nor does it automatically retry to send the

message in the event of a failure.

FdsBroadcastQ()

Purpose
Broadcast a message to a specified queue name on a node that is a member of

a specified broadcast-domain name.

Syntax

#include <fds/ipc.h>

long FdsBroadcastQ(const char *BroadcastQPtr, unsigned int BuffSize, const void *BuffPtr);

Parameters

BroadcastQPtr ð input

A pointer to a null-terminated string that contains a retail path

specification or a logical name that resolves to a retail path specification.

The retail path specification or resolved logical name must contain a

destination broadcast domain as well as a destination queue name. See

ñFile Names and Queue Namesò for more information.

The retail path specification identifies the following names:

Destination broadcast -domain name

Identifies the list of node IDs that should handle the message if

a message is received.

The predefined broadcast-domain name FDSSxxxx, where xxxx

is the system ID, can be used to send a message to every node

in the system. This broadcast domain name is available for use

with this API only , and cannot be used with any Data Distribution

APIs.

Destination queue name

Specifies the name or logical name of the queue at each node

in the broadcast domain specified by the input broadcast-

domain name to which the message should be written.

If a logical name is specified, each receiving node resolves the

logical name of the queue to determine which queue should

receive the message.

BuffSize ð input

The length, in bytes, of the message to be broadcast. The range for this

parameter is 1 to FDS_MAX_BCAST_SIZE. A BuffSize value of 0 (zero)

is not valid and results in the error -20 FDSERR_ADDRESS.

BuffPtr ð input

A pointer to a buffer that contains the message to be broadcast and

written to the specified queue name on each node in the specified

broadcast-domain name.

The data pointed to by BuffPtr does not need to be null-terminated.

However, if it is, the value for BuffSize must include 1 byte if the

null terminator is to be copied with the message data.

Remarks
This API broadcasts a message on the network. Each node that receives the
message processes the message only if the node is defined as part of the
specified destination broadcast-domain name. If the node belongs to the specified
broadcast domain name definition, the node writes the message to the destination
queue if the queue exists on that node and is not locked or full. If the node does
not belong to the specified broadcast domain name, or if the queue has not been
created, is locked, or full, the node does not write the message to the queue.

If the sending node is also part of the destination broadcast domain and has a

queue with the name of the destination queue, a copy of the message is placed

in the local queue.

Refet to the IBM Distributed Data Services/Controller Services Feature for

Windows Userôs Guide for more information about defining broadcast domain

names.

Notes:

1. The IPC component does not validate that the specified broadcast-domain

name is defined or that any or all of the nodes are active that are defined

as part of the specified broadcast-domain name.

The number of active nodes in the system defined as part of the specified
broadcast-domain name does not affect how the broadcast function works.
The message, along with the destination broadcast-domain name and
destination queue name, is sent to all IPC nodes, but is discarded by nodes
that do not belong to the specified broadcast domain. This should be taken
into consideration when selecting this method for writing messages to one or
more queues.

2. There is no guaranteed delivery with this method: data can be lost or
duplicated, or messages can arrive out of order. No confirmation is provided to
report that the message arrived successfully at any or all of the destination
nodes defined in the specified broadcast domain name. In API will be
completed successfully.

3. A unique node ID can be substituted for a broadcast-domain name and will not
be detected. The message will be broadcast to all IPC nodes, and is then
discarded at all nodes except theaddition, a broadcast to a non-existent queue
name cannot be detected by the sending node; the FdsBroadcastQ single
node with the specified node ID. If you need to send a message to only a
single node, point-to-point messaging is the most direct method. The
exception to this rule is when the unique node ID is the same as the node ID
on which the caller is running; in this case, the error -120
FDSERR_DOMAIN_NAME is returned.

Error Conditions
This API returns the following values:

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-120 FDSERR_DOMAIN_NAME

-300 FDSERR_LOGICAL_NAME

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

-330 FDSERR_MESSAGE_SIZE

-410 FDSERR_OVERFLOW

-450 FDSERR_QUEUE_NAME

-500 FDSERR_REMOTE

Examples
#include <stdio.h>
#include <string.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; // For Storing Queue Handle
typedef struct
{

char MsgText[100];
int MsgLen;
int MsgId;

} MSG_DATA;
MSG_DATA MsgData; // Message to be broadcast
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Create MyQueue
// ---
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
if (rc == FDS_SUCCESS)
{

// ---
// Message text to be broadcast
// ---
strcpy(MsgData.MsgText, "This is a broadcast message test");
MsgData.MsgId = 2;
// ---
// Determine the message length that is to be broadcasted
// ---
MsgData.MsgLen = strlen(MsgData.MsgText);
// --
// Broadcast the message to the following:
// BroadcastDomain name = DomainX
// Queue name = DomainXQueue
//
// Assuming a default system ID of 0000, you could also specify
// BroadcastDomain name = FDSS0000, which would broadcast
// the message to all nodes in the Distributed Data Services
// system.
// ---
rc = FdsBroadcastQ("DomainX::DomainXQueue", MsgData.MsgLen,

 &MsgData);
printf("FdsBroadcastQ completed with return code = (%d).\n", rc);
}
rc = FdsCloseQ(CreateQHandle);
} // end if

else
{

 // else process errors
}

FdsCloseQ()

Purpose
Close a queue handle.

Syntax

#include <fds/ipc.h>

long FdsCloseQ(long QHandle);

Parameters

QHandle ð input

Specifies the queue handle to be closed. The queue handle can have

been returned in either the FdsCreateQ() or FdsOpenQ().

Remarks
This API closes the queue. Any pending commands with the specified queue

handle are cancelled and returned with the error -420

FDSERR_QUEUE_CLOSED.

If the specified queue handle was the queue handle returned in the FdsCreateQ()

API, all outstanding messages are purged from the queue and the queue is

deleted. Any new requests with queue handles that were returned in the

FdsOpenQ() API for this queue receive an error indicating that the queue is

closed.

If the specified queue handle was one returned in the FdsOpenQ() API, the

queue contents are not affected and the queue remains available to the

application that created the queue as well as to other applications that have

opened the queue.

The specified queue handle is no longer available for use after this API

has completed successfully.

Error Conditi ons
FdsCloseQ() returns the following value:
-220 FDSERR_HANDLE

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
long NotificationQHandle = 0; // No Notification Requested
long OpenQHandle; // Queue Handle from OpenQ

long timeout = 60; // timeout FdsOpenQ Value
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Open queue on node id NODE_A
// ---
rc = FdsOpenQ("NODE_A::MyQueue",

NotificationQHandle,
timeout,
&OpenQHandle);

// Work with remote queue
// --
// Call FdsCloseQ to close queue on node id NODE_A
// --
rc = FdsCloseQ(OpenQHandle);
printf("FdsCloseQ completed with return code = (%d).\n", rc);

} // end if
else
{
 // else process errors
}

FdsCreateQ()

Purpose
Create and open a queue on the local node and assign a queue handle.

Syntax

#include <fds/ipc.h>

long FdsCreateQ(const char *QNamePtr, unsigned long MaxQSize, long
*QHandlePtr);

Parameters

QNamePtr ð input

A pointer to the name of the queue to be created on the local node. This

name is chosen by your application and can be a logical name. The queue

name or resolved logical name must be a null-terminated string of not

more than 20 characters, and must be unique on the local node. If another

queue with this name exists on the local node, an error is returned.

Queue names that begin with the prefix FDS or fds are reserved.

MaxQSize ð input

The maximum number of bytes that can be written to the queue before the

queue is full and additional application messages to be written to the

queue are either discarded or blocked. See ñFdsWriteQ()ò for more

information.

QHandlePtr ð output

A pointer to the location where the assigned queue handle is stored.

The queue handle can be used by your application to access the queue.

It can also be used in any IPC API that requires a queue handle as

input.

The creator of the queue is the queue owner.

If you call the FdsCloseQ() API with the returned queue handle, the

queue is destroyed.

Remarks
If a queue with the specified name does not already exist on the local node,

FdsCreateQ() creates and opens a queue on the local node, returning a

queue handle that your application can use to access the queue. If a queue

with the specified name already exists on the node, the error -170

FDSERR_EXISTS is returned.

The queue can also be opened by other applications using the FdsOpenQ() API.

Upon successful completion, the returned queue handle can be used by all

threads in your application.

When you close a queue whose specified queue handle was returned in the

FdsCreateQ() API, the queue is destroyed. Any pending read requests will be

completed with the error -420 FDSERR_QUEUE_CLOSED. In addition, any

subsequent requests with a queue handle associated with this queue will result

in the error -420 FDSERR_QUEUE_CLOSED. See ñFdsCloseQ()ò for more

details.

Error Conditions
FdsCreateQ() returns the following values:
-170 FDSERR_EXISTS
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-410 FDSERR_OVERFLOW
-450 FDSERR_QUEUE_NAME
-470 FDSERR_QUEUE_SIZE
-500 FDSERR_REMOTE

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>
long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; // For Storing Queue Handle
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// The following call to FdsCreateQ API creates a queue named MyQueue

// and returns a handle in CreateQHandle parameter
// --
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
printf("FdsCreateQ completed with return code = (%d).\n", rc);
// Work with created queue
// Close the Queue
rc = FdsCloseQ(CreateQHandle);

} // end if
else
{
 // else process errors
}

FdsLockQ()

Purpose
Lock the queue associated with the input QHandle. While the queue is locked,

no additional messages can be added.

Syntax

#include <fds/ipc.h>

long FdsLockQ (long QHandle);

Parameters

QHandle ð input

Specifies the queue handle associated with the queue to be locked.

Only the handle returned in the FdsCreateQ() API can be used to lock

the queue. Queue handles returned in FdsOpenQ() requests for a

queue are not valid for this request.

Remarks
FdsLockQ() locks the queue. No additional messages can be added to the queue

while it is locked. All messages that are received while the queue is locked are

discarded. At the time the queue is locked, all blocked writes (from FdsWriteQ())

are completed with the error -10 FDSERR_ACCESS and the contents of the

queue remain unchanged. The messages already in the queue can be read, but

no additional messages are added to the queue.

If the queue is already locked at the time of this request, the queue remains

locked and this API is completed without an error.

Error Conditions
FdsLockQ() returns the following values:

-10 FDSERR_ACCESS

-220 FDSERR_HANDLE

Examples

#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; // For Storing Queue Handle
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// Create MyQueue
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
if (rc == FDS_SUCCESS)
{

// --
// Call FdsLockQ to lock MyQueue
// --
rc = FdsLockQ(CreateQHandle);
printf("FdsLockQ completed with return code = (%d).\n", rc);

}
// Close the Queue
rc = FdsCloseQ(CreateQHandle);

} // end if
else
{
 // e lse process errors
}

FdsOpenQ()

Purpose
Open a queue on the local or remote node and return a queue handle that can

be used to write to the queue.

Syntax

#include <fds/ipc.h>

long FdsOpenQ(const char *RetPathSpecPtr, long NotificationQHandle, long timeout, long
*QHandlePtr);

Parameters

RetPathSpecPtr ð input

A pointer to a string that contains a retail path specification. The retail path

specification can be a logical name, but must be a null-terminated string.

The input retail path specification or resolved logical name must contain a

queue name. It can optionally contain a node ID or RoleName. See ñFile

Names and Queue Namesò for more information about retail path

specification formats. Each piece of the retail path specification or

resolved logical name determines what action the IPC component will

take:

QName

The name of the queue to be opened. See FdsCreateQ() for

more information about queue names. A queue with the

specified queue name must have been created on the specified

node using the FdsCreateQ() API before it can be opened using

the FdsOpenQ() API.

RoleName or node ID A RoleName can be specified to tell the IPC

component to open the queue on whatever node is acting the role

defined by the RoleName. The IPC component resolves the

RoleName to the actual node ID.

A node ID can be specified if the queue is to be opened on a

particular node, no matter what role that node currently has. The

node ID specifies the unique name of the node on which the

queue should be opened.

Note: Neither RoleName nor node ID are required if you are

opening a queue on the local node. However, if you are

opening a queue on a remote node, you must specify the

node ID or a RoleName of the remote node. If no node ID

or RoleName is specified, the IPC component attempts to

open the queue on the local node only.

NotificationQHandle ð input

The handle of a local queue that has been opened or created by your

application. The IPC component uses this handle to write a notification

to the queue if one of the following conditions occurs:

¶ The queue being opened in this call is deleted (closed by the owner)

¶ Communication fails with the remote node where the queue being
opened in this call is located.

If the queue associated with the specified NotificationQHandle is closed

or locked when a notification is generated, the notification is discarded.

The failure is returned as an error the next time your application

attempts to write to the queue.

Valid values for NotificationQHandle are:

0 (zero)

No notifications are written to the queue if one of the

above conditions occurs.

QHandle

the valid queue handle of a queue, reated or opened on the

local node by your application, to which notifications will be

written.

timeout ð input

The time, in seconds, that an application is blocked if the IPC component

is unable to open the queue on the first attempt, unless a non-recoverable

error is detected (for example, the adapter is closed). If the queue is on a

remote node that the IPC component has not communicated with before

this call, the open process might be a lengthy operation because it

requires establishing communication with the node. Upon completion of

the attempt to establish communication and open the queue. The IPC

component waits and retries again if the operation was not successful and

the specified time out has not already elapsed,. A time out will not occur

while the IPC component is attempting to establish communication and

opening the queue; a timeout occurs only when the IPC component is

determining whether it should wait and try again. Therefore, the specified

time out and the actual elapsed time before the IPC component returns

with the error -580 FDSERR_TIMEOUT could vary by as much as 2 to 3

minutes. Valid values are:

0 (zero)

The IPC component attempts to open the queue once and

return the results.

Greater than zero

The IPC component blocks the caller up to the specified time

or until it successfully opens the queue, whichever is less.

Less than zero

The IPC component blocks the caller until it successfully opens

the queue.

QHandlePtr ð input/output

A pointer to the location where the assigned queue handle is stored.

The queue handle can be used by your application to access the

queue.

Remarks
FdsOpenQ() opens a queue on the local or a remote node. Upon successful

completion, this API returns a queue handle for your application to use to write

to the specified queue. The returned queue handle can be used by any thread

within your application.

The queue must be created (using FdsCreateQ()) before it can be opened.

If a RoleName is specified for the node, the IPC component locates the node ID of
the node that is acting that role. The IPC component saves the information about
the role used to locate the node to open the queue. Using the FdsWriteQ() API,
you can request that the IPC component confirm that the node is still acting the
role specified in the FdsOpenQ() request. If requested, the IPC component verifies
that the node is still acting that role. If not, the IPC component does not write the
message to the queue and returns an error or posts a notification to the notification
queue that was specified in the FdsOpenQ() request. See ñFdsWriteQ()ò for more
information.
If the specified queue name is a logical name, the IPC component resolves the
queue name at the node where the queue is to be opened.

Error Conditions
FdsOpenQ() returns the following values:
-300 FDSERR_LOGICAL_NAME
-310 FDSERR_LOGICAL_NAME_NOT_FOUND
-340 FDSERR_NODE_NAME
-350 FDSERR_NODE_NOT_FOUND
-370 FDSERR_NOTIFY_QUEUE

-410 FDSERR_OVERFLOW
-450 FDSERR_QUEUE_NAME
-460 FDSERR_QUEUE_NOT_FOUND
-500 FDSERR_REMOTE
-540 FDSERR_ROLE_NAME
-550 FDSERR_ROLE_NOT_FOUND
-580 FDSERR_TIMEOUT

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
long NotificationQHandle = 0; // No Notification Requested
long OpenQHandle; // Queue Handle from OpenQ
long timeout = 60; // timeout FdsOpenQ Value
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// ---
// Call FdsOpenQ to open queue on node id NODE_A
// ---
rc = FdsOpenQ("NODE_A::MyQueue",

NotificationQHandle,
timeout,
&OpenQHandle);

printf("FdsOpenQ completed with return code = (%d).\n", rc);
// Work with remote queue
// Close the Queue
rc = FdsCloseQ(OpenQHandle);

} // end if
else
{
// else process errors
}

FdsPurgeMsg()

Purpo se
Purge the next message in the queue.

Syntax

#include <fds/ipc.h>

long FdsPurgeMsg(long QHandle);

Parameters

QHandle ð input

Specifies the queue handle associated with the queue from which a

message should be removed and discarded. Only the queue handle

returned in FdsCreateQ() can be used to purge a message from the

queue. Queue handles returned in FdsOpenQ() requests for a queue are

not valid for this request. See FdsCreateQ() and FdsOpenQ() for more

information about queue handles.

Remarks
This API removes and discards the next message in the queue associated with

the specified queue handle.

Error Conditions
FdsPurgeMsg() returns the following values:

-10 FDSERR_ACCESS

-220 FDSERR_HANDLE

-430 FDSERR_QUEUE_EMPTY

Examples
#include <stdio.h>
#include <string.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long QueueHandle = 0;
char ReadBuffer[100]; // Message from Read Queue
unsigned int BufferLength = sizeof(ReadBuffer); // Length of Message
int MsgType;
long timeout = 60; // timeout Value
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

rc = FdsCreateQ("MyQueue", MaxQSize, &QueueHandle);
if (rc == FDS_SUCCESS)
{

// Write to MyQueue
rc = FdsWriteQ(QueueHandle,

BufferLength,
"Message to be purged",
FDS_WRITTEN,
timeout);

// Set BufferLength to value smaller than the actual message size
BufferLength = 10;
// Attempt to read message on MyQueue
rc = FdsReadQ(QueueHandle,

&BufferLength,
ReadBuffer,
timeout,
&MsgType);

// If the Read was unsuccessful
if (rc != FDS_SUCCESS)
{

printf("Read failed. Return code = (%d).\n", rc);

// ---
// If error is that read buffer is too small, purge the message
// ---
if (FDSERR_BUFFER_SIZE == rc)
// --
// Call FdsPurgeMsg API to delete the message from MyQueue
// ---
rc = FdsPurgeMsg (QueueHandle);
printf("FdsPurgeMsg completed with return code = (%d).\n", rc);

} // end if
// Else process message
// Close MyQueue
rc = FdsCloseQ(QueueHandle);

} // end if
} // end if
else
{
// else process errors
}

FdsQueryQ()

Purpose
Query information about a local queue.

Syntax

#include <fds/ipc.h>

long FdsQueryQ(long QHandle, unsigned int *QMsgCountPtr,
unsigned long *QMaxSizePtr,
unsigned long *QBytesLeftPtr,
unsigned int *QueryFlagPtr);

Parameters

QHandle ð input

A queue handle associated with the queue to be queried. Only the

handle returned in the FdsCreateQ() API can be used to query the

queue. Queue handles returned in FdsOpenQ() requests for a queue are

not valid for this request.

QMsgCountPtr ð output

An input pointer to the location where the number of messages currently in

the queue is written.

QMaxSizePtr ð output

An input pointer to the location where the maximum queue size is

written. The value returned is the number of bytes.

QBytesLeftPtr ð output

An input pointer to the location where the number of bytes that can be

added to the queue before the queue is full. This number is the

maximum queue size minus the number of bytes currently written in the

queue.

QueryFlagPtr ð output

An input pointer to the location where the query status is written. The

query flag contains the following attributes:

Lock status

Indicates whether or not the queue is locked. See FdsLockQ()

and FdsUnlockQ() for more information.

Block status

Indicates whether or not the queue is blocked. If it is blocked,

at least one message has been blocked due to insufficient

space available in the queue. See FdsWriteQ() for more

information.

To determine whether a particular attribute is set, perform a bitwise AND

operation of the value pointed to by QueryFlagPtr with the attribute you

are testing. If the result is non-zero, the attribute is set.

Valid values are:

FDS_QUEUE_LOCKED

The queue is locked.

FDS_QUEUE_BLOCKED
The queue is blocked.

Remarks
This API queries and returns information about the local queue associated with the

specified QHandle parameter.

Error Conditions
FdsQueryQ() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>
\
long rc; // Return from API Call
long MaxQSize = 500; // Maximum queue size
long CreateQHandle = 0; // Queue Handle from CreateQ
unsigned int NumMessages; // Number of messages in the queue
unsigned long BytesLeft; // Number of bytes left in the queue
unsigned int QueryFlag; // Query flag value
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// Create MyQueue
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);

} // end if
if (FDS_SUCCESS == rc)
{

// --
// Call FdsQueryQ API to get information about MyQueue
/ / ---

rc = FdsQueryQ(QueueHandle,
&NumMessages,
&MaxQSize,
&BytesLeft,

&QueryFlag);
} // end if
if (FDS_SUCCESS == rc)
{

printf("Number of messages in queue = (%i). \n", NumMessages);
printf("Maximum queue size = (%l) bytes. \n", MaxQSize);
printf("Number of bytes left in queue = (%l). \n", BytesLeft);
if (QueryFlag & FDS_QUEUE_LOCKED)
printf(" ----> Queue is locked.\n");

if (QueryFlag & FDS_QUEUE_BLOCKED)
printf(" ----> Queue is blocked.\n");

} // end if
else
printf(" Query Queue failed. Return Code = (%l).\n", rc);

FdsReadQ()

Purpose
Read the next message from a queue.

Syntax

#include <fds/ipc.h>

long FdsReadQ(long QHandle, unsigned int *BuffSizePtr, void *BuffPtr, long
timeout, int *MsgTypePtr)

Parameters

QHandle ð input

Specifies a queue handle associated with a queue from which a message

is to be read. Only the queue handle returned in the FdsCreateQ() API can

be used to read from the queue. Queue handles returned in FdsOpenQ()

requests for a queue are not valid for this request.

BuffSizePtr ð input/output

Input When this API is called, this value must specify the length

of memory pointed to by BuffPtr.

Output

When this API has completed successfully, the value pointed to

by BuffSizePtr is replaced by the size of the message that was

copied to the input buffer pointed to by the BuffPtr parameter.

If the read fails with the error -40 FDSERR_BUFFER_SIZE, the

value pointed to by BuffSizePtr is replaced with the size of the

next message in the queue.

If the read fails with any other error, the value pointed to

by BuffSizePtr is not modified.

BuffPtr ð input

Specifies a pointer to a buffer where the message read from the queue

is placed.

timeout ð input

Indicates whether and for how long your application is suspended to

wait for a message if there are no messages in the queue. Valid values

are:

0 (zero)

If no messages are in the queue, FdsReadQ() returns

immediately with the error -430 FDSERR_QUEUE_EMPTY.

Less than zero

If no messages are in the queue, FdsReadQ() suspends your

thread until a message is in the queue or until the queue is

closed (from another thread in your application).

Greater than zero

The maximum time in seconds that FdsReadQ() suspends

your thread before returning the error -580

FDSERR_TIMEOUT if no messages are written to the queue.

MsgTypePtr ð output Specifies an input pointer to an integer where the

MsgType value of the message that was read is stored. The value of

MsgType identifies whether the message was written to the queue by

an application or by a DDS component. Possible values are:

FDS_IPC_MSG

If the queue being read from was designated as a notification

queue when another queue was opened, the IPC component

writes notifications to this queue if communication with the other

queue fails. The format of the data copied to the memory pointed

to by BuffPtr is defined by the FDS_IPC_MSG_STRUCT data

structure.

FDS_DIST_SYNC_NOTIFY_MSG

This value identifies a message used by the Data Distribution

component for file and directory synchronization notification. This

message is generated as the result of a previous call to the

FdsSetupSyncIDNotify() API. The format of the data copied to the

memory pointed to by BuffPtr is defined by the FDS_SYNC_ID

data structure.

FDS_DIST_STATE_NOTIFY_MSG

This value identifies a message used by the Data Distribution

component for state change notifications. This message is

generated as the result of a previous call to the

FdsSetupDistMonitor() API. The format of the data copied to the

memory pointed to by BuffPtr is defined by the

FDS_DIST_STATE data structure.

FDS_APPL_MSG

If the source of the message is an application other than the IPC

component, the MsgType parameter is set to FDS_APPL_MSG.

The format of the data copied to the memory pointed to by

BuffPtr is defined by the application.

Remarks
FdsReadQ() reads the next message from the queue associated with the

input queue handle, and copies the message into the buffer pointed to by the

BuffPtr parameter.

Upon successful completion, the parameter pointed to by BuffSizePtr is

replaced with the actual number of bytes placed in the buffer.

If the size of the message in the queue exceeds the length of the input buffer

(specified by the value pointed to by the BuffSizePtr parameter), the error -40

FDSERR_BUFFER_SIZE is returned and the parameter pointed to by BuffSizePtr

is replaced with the actual size of the next message. You can call another

FdsReadQ() API with a larger buffer to read the message or you can purge the

message from the queue using the FdsPurgeMsg() API.

Error Conditions
FdsReadQ() returns the following values:

-10 FDSERR_ACCESS

-20 FDSERR_ADDRESS

-40 FDSERR_BUFFER_SIZE

-220 FDSERR_HANDLE

-420 FDSERR_QUEUE_CLOSED

-430 FDSERR_QUEUE_EMPTY

-580 FDSERR_TIMEOUT

Examples

#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; // Queue Handle from CreateQ
long timeout = 60; // timeout Value
char ReadBuffer[100]; // Message from Read Queue
unsigned int BufferLen = sizeof(ReadBuffer); // Length of Message Read
int MsgType; // Type of Message Read
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// Create MyQueue
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);

} // end if
// If create MyQueue was successful
if (rc == FDS_SUCCESS)
{

// ---
// Write to MyQueue

// ---
rc = FdsWriteQ(CreateQHandle,

BufferLen,
"Read Message Data",
FDS_WRITTEN,
timeout);

// ---
// Call FdsReadQ API to read message in "MyQueue"
// ---
rc = FdsReadQ(CreateQHandle,

&BufferLen,
ReadBuffer,
timeout,
&MsgType);

printf("FdsReadQ completed with return code = (%d).\n", rc);
// ---
// Process Message in Read Buffer
// CloseQ
// ---
rc = FdsCloseQ(CreateQHandle);

} // end if
else
{
 // else process errors

}

FdsUnlockQ()

Purpose
Unlock a locked queue. When a queue is unlocked, applications can resume

writing messages to the queue.

Syntax

#include <fds/ipc.h>

long FdsUnlockQ(long QHandle);

Parameters

QHandle ð input

Specifies the queue handle associated with the queue to be unlocked.

Only the handle returned in the FdsCreateQ() API can be used to unlock

the queue. Queue handles returned in FdsOpenQ() requests for a queue

are not valid for this request.

Remarks
This API unlocks a locked queue to allow applications to resume writing

messages to the queue.

If the queue is not locked at the time of this request, the queue remains

unlocked and the API completes without an error.

Error Conditions

FdsUnlockQ() returns the following values:
-10 FDSERR_ACCESS
-220 FDSERR_HANDLE

Examples
#include <stdio.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
unsigned long MaxQSize = 500; // Maximum Queue Size
long CreateQHandle = 0; // For Storing Queue Handle
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

// --
// Create MyQueue
// --
rc = FdsCreateQ("MyQueue", MaxQSize, &CreateQHandle);
if (rc == FDS_SUCCESS)
{

// --
// Lock MyQueue
// --
rc = FdsLockQ(CreateQHandle);

}
// --
// Work with locked queue
// --
if (rc == FDS_SUCCESS)
{

// --
// Call UnlockQ API to unlock the locked queue
// --
rc = FdsUnlockQ(CreateQHandle);
printf("FdsUnLockQ completed with return code = (%d).\n", rc);

}
// --
// Close the Queue
// --
rc = FdsCloseQ(CreateQHandle);

} // end if
else
{
 // else process errors
}

FdsWriteQ()

Purpose
Write a message to the queue associated with the input QHandle.

Syntax

#include <fds/ipc.h>

long FdsWriteQ(long QHandle, unsigned int BuffSize,
const void *BuffPtr, int WriteFlag,
long timeout);

Parameters

QHandle ð input

The handle of the queue associated with the queue to which the

message is to be added. The QHandle must be one that was returned to

your application in either FdsCreateQ() or FdsOpenQ().

BuffSize ð input

The length, in bytes, of the message to be written to the queue.

The data pointed to by BuffPtr does not need to be null-terminated. If it

is, the value for BuffSize must include 1 byte if the null terminator is to

be copied with the message data. The maximum supported message

size is the smaller of the following sizes:

¶ 60,000 bytes (the maximum message size supported by the

IPC component)

¶ The maximum queue size of the queue to be written to

(see FdsCreateQ() for more information)

A BuffSize value of 0 (zero) is not valid and results in the error -

20 FDSERR_ADDRESS.

BuffPtr ð input

A pointer to the buffer that contains the message to be written to the

queue.

WriteFlag ð input

A flag that contains one or more of the following write attributes:

RoleConfirm

Whether the role should be confirmed. The default

is FDS_NO_CONFIRM_ROLE. Valid values are:

FDS_CONFIRM_ROLE

Set this flag if you specified a RoleName instead of a

node ID in the FdsOpenQ() request, and you want the

IPC component to confirm that the node on which the

queue is opened is still acting that role. If you request this

confirmation and the IPC component detects that the

node is not acting the specified role, the message is

discarded.

This flag can be used in combination with

the FDS_WRITTEN flag only.

FDS_NO_CONFIRM_ROLE

The IPC component will not confirm the role on

the destination node.

Note: If you specified a queue name only or if you
specified a node ID instead of a RoleName in the

FdsOpenQ() request, this attribute is ignored.

WaitConfirm

The level of confirmation to be completed by the IPC

component. The calling thread is suspended until the specified

level of confirmation has been completed. The default is

FDS_REQUEST_COPIED. Valid values are:

FDS_WRITTEN

The IPC component returns without an error after

receiving

confirmation from the destination node that the message

has been successfully written to the queue.

When this level of confirmation is requested and there is

not enough room in the queue for the message, the queue

becomes blocked. While a queue is blocked, all other

messages written to the queue with this level of

confirmation requested are blocked behind this request.

All messages broadcast to this queue or written with any

other level of confirmation are discarded.

As space become available in the queue, blocked

messages are retrieved to be written in the same order

that the messages were received and blocked.

If the caller specified a timeout other than 0 and the

queue is blocked, the callerôs thread remains suspended

until space becomes available and the message has

been written successfully to the queue or until an error is

detected.

The IPC component waits for the confirmation until one

of the following conditions occurs, at which time an error

is returned:

¶ The API has timed out (see the timeout parameter)

¶ The destination queue is locked

¶ The IPC component detected that it can no longer
communicate with the destination node

¶ The RoleConfirm attribute in the WriteFlag parameter
was set to FDS_CONFIRM_ROLE and the destination
node is no longer acting the role specified in the
FdsOpenQ() API

If this flag is specified when writing to a remote

destination node, the minimum timeout value used is the

value specified for the configuration parameter

IPCtimeout . Any timeout value that is less than the value

specified for IPCtimeout (including 0) will be ignored and

the IPCtimeout value will be used.

A minimum timeout value is required to allow the

FDS_WRITTEN confirmation to be returned to the

sender. Your testing could determine that a longer

timeout value is needed for high-volume systems.

If your application cannot wait the timeout value

specified by IPCtimeout for a confirmation, it should

not use the FDS_WRITTEN value.

FDS_REQUEST_COPIED

The IPC component returns without an error after the

input request data has been validated and the request

has been copied.

Note: The IPC component does not wait to receive a

confirmation from the destination node confirming that

the message was delivered and written to the destination

queue. Therefore, this API might be completed without

an error, but the message will be discarded if the IPC

component detects any of the following conditions:

¶ The IPC component has lost communication with the
destination node

¶ The destination queue is locked or blocked

¶ There is not enough room in the queue for the
message

¶ The RoleConfirm attribute in the WriteFlag parameter
was set to FDS_CONFIRM_ROLE and the destination
node is no longer acting the role specified in the
FdsOpenQ() API

timeout ð input

Whether and for how long your application is suspended to wait for the

specified level of confirmation to be completed. If the requested

confirmation level was FDS_REQUEST_COPIED, this parameter does

not apply and is ignored. Valid values are:

0 (zero)

FdsWriteQ() attempts to complete the write request once. If the

WaitConfirm attribute in the WriteFlag parameter is set to

FDS_DELIVERED and the IPC component fails to deliver the

message, an error is returned and no retries are performed. If

the WaitConfirm attribute in the WriteFlag parameter is set to

FDS_WRITTEN and the IPC component fails to deliver the

message or receive confirmation that the message was

successfully written to the queue, an error is returned and no

retries are performed. The IPC component does not suspend the

callerôs thread if there is not enough room in the queue for the

message or the queue is already blocked.

Less than zero

FdsWriteQ() suspends the callerôs thread indefinitely until the

confirmation requested by the WaitConfirm attribute in the

WriteFlag parameter is received or until an unrecoverable error

is detected (for example, communication with the destination

node has failed). If there is not enough room in the queue or if

the queue is already blocked, the callerôs thread is suspended

until there is room available in the queue only if the WaitConfirm

attribute in the WriteFlag parameter value is FDS_WRITTEN.

Greater than zero
The time, in seconds, that the calling thread remains suspended
while waiting for the correct level of confirmation to be
completed. If the request could not be completed in the specified
period of time, an error is returned.

Remarks
FdsWriteQ() writes a message to the queue associated with the input

QHandle parameter. The specified QHandle parameter must be one that was

returned in either FdsOpenQ() or FdsCreateQ().

Error Conditions
FdsWriteQ() returns the following values:
-10 FDSERR_ACCESS
-20 FDSERR_ADDRESS
-40 FDSERR_BUFFER_SIZE
-210 FDSERR_FLAG
-220 FDSERR_HANDLE
-325 FDSERR_MEMORY_CONSTRAINED
-330 FDSERR_MESSAGE_SIZE
-350 FDSERR_NODE_NOT_FOUND
-420 FDSERR_QUEUE_CLOSED
-440 FDSERR_QUEUE_FULL
-500 FDSERR_REMOTE
-530 FDSERR_ROLE_CHANGE
-580 FDSERR_TIMEOUT

Examples
#include <stdio.h>
#include <string.h>
#include <fds/ipc.h>
#include <fds/fds.h>
#include <fds/errno.h>

long rc; // Return from API Call
long OpenQHandle = 0; // Queue Handle from OpenQ
long NotifyQHandle = 0; // No notification requested
long timeout = 60; // timeout Value
char WriteBuffer[100]; // Message from Write Queue
unsigned int BufferLen = sizeof(WriteBuffer); // Length of Message Write
int MsgType; / / Type of Message Write
// Initialize DDS - could use FdsInit2()
rc = FdsInit();
// If initialization was successful
if (rc == FDS_SUCCESS)
{

rc = FdsOpenQ("NODE_A::MyQueue",
NotifyQHandle,
timeout,
&OpenQHandle);

} // end if
if (rc == FDS_SUCCESS)

{
strcpy(WriteBuffer, "Write to Queue");
// ---
// Call FdsWriteQ API to write a message to the queue
// ---
rc = FdsWriteQ(OpenQHandle,
BufferLen,
"WriteBuffer",
FDS_WRITTEN,
timeout);
printf("FdsWriteQ completed with return code = (%d).\n", rc);
// --
// process message
// --
// --
// CloseQ
// --
rc = FdsCloseQ(OpenQHandle);
// --
// CloseQ
// --
rc = FdsCloseQ(CreateQHandle);

} // end if
else
{
 // else process errors
}

Appendix A. Data Types
This section contains descriptions of the data types defined by the DDS APIs.

Note: DDS makes use of several program constants, which are used by the data

types described in this section. These constants are defined in the C

language header files provided with DDS. See ñC Language Header Filesò

 for more information about the header files.

FDS_NODE_NAME

Node ID.

typedef char FDS_NODE_NAME [FDS_MAX_NODE_NAME_LEN]

FDS_NODE_INFO

Node ID and communication status data structure.

typedef struct
{

FDS_NODE_NAME NodeID;
short NodeStatus;

} FDS_NODE_INFO;

NodeID

Node ID

NodeStatus

Communications status with the acting primary distributor:

FDS_ACTIVE

The node is communicating with the acting primary

distributor.

FDS_INACTIVE

The node is not communicating with the acting primary

distributor.

FDS_NODE_STATE

Node ID and distribution state data structure.

typedef struct
{

FDS_NODE_NAME Name;
int State;

} FDS_NODE_STATE ;

Name Node ID

State Reserved.

FDS_ROLE_NAME

Role name.

typedef char FDS_ROLE_NAME [FDS_MAX_ROLE_NAME_LEN]

FDS_DOMAIN_NAME

Domain name.

typedef char FDS_DOMAIN_NAME [FDS_MAX_DOMAIN_NAME_LEN]

FDS_SYNC_ID

Data Distribution synchronization ID.

typedef struct

{

unsigned long ObjectHandle ;
long ObjectCreationTime ;
unsigned long SequenceNumber ;
long SequenceTimeStamp ;

} FDS+SYNC_ID;

FDS_DDS_BLOCKED_INTERFACE ;
Interfaces that DDS will be blocked from using.
typedef struct
{
char Address[FDS_MAX_TCPIP_ADDR_LEN+1];
} FDS_DDS_BLOCKED_INTERFACE;

FDS_CFG
Installation and configuration data structure.
typedef struct

{
short Adapter0Sessions;
short Adapter1Sessions;
short Adapter2Sessions;
short Adapter3Sessions;
unsigned short AdptrNumNames;
unsigned short AdptrResetValue;
unsigned short DDActive;
unsigned short DistributionRole;
unsigned short IPCTimeout;
unsigned short LocatePrimary;
unsigned long MaximumMemory;
unsigned short MaxRequestors;

FDS_NODE_NAME NodeID;
short NVRAMApplLine;
char ProductLevel[9];
unsigned short RemoteIPC;
char SystemID[5];
char WorkDirectory[FDS_MAX_WORK_DIR_LENGTH];
char ControlledDrives[FDS_MAX_CONTROLLED_DRIVES_SIZE];
char FDSInstallDirectory[FDS_MAX_PATH_LENGTH];
unsigned short IPCTransport;
unsigned short IPCPortStart;
unsigned short IPCPortCount;
unsigned short IPCHeartbeatInterval;
unsigned short NetworkRequestInterval;
unsigned short NetworkRequestRetries;
FDS_DDS_BLOCKED_INTERFACE

 DDSBlockedInterface[FDS_MAX_BLOCKED_INTERFACES];

unsigned short DistRenamedFile;
} FDS_CFG;

Adapter0Sessions
Number of NetBIOS sessions for LAN adapter 0.
Adapter1Sessions

Number of NetBIOS sessions for LAN adapter 1.

Adapter2Sessions
Number of NetBIOS sessions for LAN adapter 2.

Adapter3Sessions
Number of NetBIOS sessions for LAN adapter 3.

AdptrNumNames
Number of NetBIOS names used on each adapter.

AdptrResetValue
Number of seconds between adapter resets.

DDActive
FDS_CONFIG_YES

Data Distribution is configured on the node.
FDS_CONFIG_NO

Data Distribution is not configured on the node.
DistributionRole

FDS_CONFIG_NONE
Data Distribution is not configured on the node.

FDS_CONFIG_PRIMARY_DIST
The node is the configured primary distributor.

FDS_CONFIG_BACKUP_DIST
The node is the configured backup distributor.

FDS_CONFIG_SUBORDINATE
The node is a subordinate.

IPCTimeout

IPC time out, in seconds.

LocatePrimary

FDS_CONFIG_YES
Data Distribution is configured on the node.

FDS_CONFIG_NO
 Data Distribution is not configured on the node.

DistributionRole

FDS_CONFIG_NONE
 Data Distribution is not configured on the node.

FDS_CONFIG_PRIMARY_DIST
The node is the configured primary distributor.

FDS_CONFIG_BACKUP_DIST
The node is the configured backup distributor.

FDS_CONFIG_SUBORDINATE
The node is a subordinate.

IPCTimeout
IPC time out, in seconds.

LocatePrimary

FDS_CONFIG_YES
A primary distributor is present in the system.

FDS_CONFIG_NO
A primary distributor is not present in the system.

MaximumMemory
Amount of shared memory used, in kilobytes.

MaxRequestors
Number of file clients supported by this node.

NodeID
Node ID.

NVRAMApplLine
Amount of NVRAM, in kilobytes, reserved for application use.

ProductLevel
Encoding of product version, release, and modification level.

RemoteIPC

FDS_CONFIG_YES
Remote IPC is configured.

FDS_CONFIG_NO
Remote IPC is not configured.

SystemID
System ID.

WorkDirectory

Null-terminated (\0) path specification of work directory.

The path must include the final directory separator (\).

ControlledDrives

Null-terminated (\0) string of controlled drive letters.

FDSInstallDirectory

Null-terminated (\0) path specification of install directory.

The path must include the final directory separator (\).

IPCTransport

FDS_CONFIG_NETBIOS
IPC uses NetBIOS as the transport layer protocol.

FDS_CONFIG_TCPIP
IPC uses TCP/IP as the transport layer protocol.

IPCPortStart
First TCP/UDP port number used by IPC.

IPCPortCount
Number of TCP/UDP ports used by IPC.

IPCHeartbeatInterval

Time interval between IPC checks for a communication

connection, in seconds.

NetworkRequestInterval

Time interval between IPC queries of the LAN for the TCP/IP

port associated with a broadcast domain, in milliseconds.

NetworkRequestRetries

Maximum number of times IPC queries the LAN for the TCP/IP

port associated with a broadcast domain.

DDSBlockedInterface

Maximum number of interfaces that DDS can be blocked

from using.

DistRenamedFile

Whether distributed files (that are not part of a

distributed subdirectory) remain distributed if they are

renamed.

AutoSwitchOver

FDS_CONFIG_YES

Automatic Switch-Over is configured on this node.

FDS_CONFIG_NO

Automatic Switch-Over is not configured on this node.

AutoSwitchOverDelay

Time in minutes to wait before automatically activating the

acting backup as the primary distributor.

AutoSwitchOverForce

FDS_CONFIG_YES

Force automatically activating the acting backup as

the primary distributor.

FDS_CONFIG_NO

Do not force automatically activating the acting backup

as the primary distributor if it is not fully reconciled.

PrimaryIPAdapter

The network adapter number specified using the

PrimaryIPAddress keyword that will be added to during activation

of the primary distributor.

PrimaryIPAddress
The IP address to be added to the node that is being activated
PrimarySubnetMask

PrimaryIPAddress
The subnet mask used with the PrimaryIPAddress.

PrimaryComputerName

The computer name (or NetBIOS name) to add to the node

being activated as the primary distributor.

FDS_IPC_MSG_STRUCT

IPC notification data structure.

typedef struct
{

long ClosedQHndl ;
long ReasonCode ;

} FDS_IPC_MSG_STRUCT;

ClosedQHndl

IPC queue to which this notification refers.

ReasonCode

The reason the IPC queue was closed. Valid values are:

FDS_IPC_MSG_REASONCODE_COMM_FAILED

IPC remote communication has failed.

FDS_IPC_MSG_REASONCODE_Q_CLOSED

The remote IPC queue has been closed by the

application.

FDS_DIST_STATE

Node ID and role-state data structure.

typedef struct
{
long Reserved[3]
long RoleState;
FDS_NODE_NAME NodeID;

} FDS_DIST_STATE

Reserved

Reserved.

RoleState

Distributor state.

FDS_ACTING_PRIMARY

Current role is acting primary.

FDS_TRANS_TO_ACTING_PRIMARY

In transition to the acting primary role.

FDS_ACTING_BACKUP

Current role is acting backup.

FDS_TRANS_TO_ACTING_BACKUP

In transition to the acting backup role.

NodeID

Node ID.

FDS_DATE_TIME

Date and time data structure.

typedef struct

unsigned short Year ;
unsigned char Month ;
unsigned char Day ;
unsigned char Hour ;
unsigned char Minute ;
unsigned char Second ;

} FDS_DATE_TIME

Appendix B. Error Codes
DDS return codes are 4-byte signed integers. A 0 (zero) return code indicates a

successful function call. A negative return code indicates an unsuccessful function

call.

This section contains a list of error codes in alphanumeric order.

-10 FDSERR_ACCESS
Explanation: A locking or sharing conflict occurred. Specific conditions for
this error include:

Note: Some of the descriptions indicate that this error can be caused by a
file being open. In such cases, the file may be opened by an
application or by the Data Distribution component. See the note
under ñReconciliationò for information about Data
Distributionôs use of distributed files.

¶ The file is open or the file is read-only. These APIs are associated with
this error:
ï ñFdsDeleteFile()ò
ï ñFdsRenameFile()ò
ï ñFdsSetFileAttributes()ò

¶ Another process has locked the physical drive, the file, or some portion of the
file and the requested access would conflict with this lock, or another process
has access to the file and the requested lock would conflict with this access;
or, the file is considered read-only at the operating system level and
FDS_FILE_ACCESS_READ_WRITE was specified.
These APIs are associated with this error:
ï ñFdsCreateKeyedFile()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò

¶ The file is locked. These APIs are associated with this error:
ï ñFdsFindNextSeqRecord()ò
ï ñFdsFlushBinFile()ò
ï ñFdsReadBinFile()ò
ï ñFdsReadKeyedRecord()ò
ï ñFdsReadSeqRecord()ò
ï ñFdsReleaseKeyedRecord()ò
ï ñFdsSeekBinFilePos()ò
ï ñFdsSetBinFileLocks()ò
ï ñFdsSetBinFileSize()ò
ï ñFdsWriteBinFile()ò

¶ The file is locked or FDS_FILE_ACCESS_READ_WRITE was not specified
when the file was opened. These APIs are associated with this error:
ï ñFdsDeleteKeyedRecord()ò
ï ñFdsWriteSeqRecord()ò

¶ ñFdsWriteKeyedRecord()ò was called and the file is locked,
FDS_FILE_ACCESS_READ_WRITE was not specified when the file was
opened, or FDS_FILE_RECORD_UNLOCK_NO was specified and the
record is locked.

¶ ñFdsSetDistribution()ò was called and the file or subdirectory is open.

¶ ñFdsDeleteBcastDomain()ò was called and a file distributed to the

broadcast domain is open.

¶ ñFdsWriteQ()ò was called; FDS_WRITTEN was specified and the

queue is locked.

¶ A write-only queue handle (returned by ñFdsOpenQ()ò) was specified

for an operation that requires a read-write queue handle (returned by

ñFdsCreateQ()ò).

¶ ñFdsCreateDir()ò was called and the directory already exists.

¶ ñFdsRemoveDir()ò was called and the directory is currently being used

by another process or the directory is not empty.

¶ ñFdsRestrictFile()ò was called and an attempt was made to restrict a

file that has already been restricted.

¶ ñFdsUnrestrictFile()ò was called and an attempt was made to remove

restrictions from a file that is not restricted.

¶ ñFdsQueryFileSystemInfo()ò was called and FileSystemID refers to a

locked drive specification.

-20 FDSERR_ADDRESS
Explanation: Either a pointer that is not valid was specified, indicating that
the process does not have access to the full length of the buffer, or an input
buffer size of 0 (zero) was specified.

These APIs are associated with this error:

¶ ñFdsQueryConfig()ò

¶ ñFdsReadKeyedRecord()ò

¶ ñFdsReleaseKeyedRecord()ò

¶ ñFdsWriteKeyedRecord()ò

¶ ñFdsWriteSeqRecord()ò

¶ ñFdsReadSeqRecord()ò

¶ ñFdsReadBinFile()ò

¶ ñFdsWriteBinFile()ò

¶ ñFdsGetFileNames()ò

¶ ñFdsGetNodes()ò

¶ ñFdsCreateBcastDomain()ò

¶ ñFdsGetDomainList()ò

¶ ñFdsGetDomainNodes()ò

¶ ñFdsBroadcastQ()ò

¶ ñFdsReadQ()ò

¶ ñFdsWriteQ()ò

-25 FDSERR_APPL_DOWN
Explanation: The DDS exit processing for this application has been run because

the operating system indicated that the application has ended. The application can

no longer make API calls to DDS. It must restart and reinitialize DDS before using

the DDS API. This error occurs if the applicationôs exit process or signal handling

occurs after DDS exit processing.

-30 FDSERR_BLOCK_SIZE
Explanation: A block size that is not valid was specified to
ñFdsCreateKeyedFile()ò.

-40 FDSERR_BUFFER_SIZE
Explanation: The input buffer was too large to be contained within an internal

buffer, or the input buffer was not large enough to contain all of the output data.

No output data is returned. The size of the output data is returned.

Specific conditions for this error include:

-50 FDSERR_CHAIN_THRESH
Explanation: A chain threshold that is not valid was specified to

ñFdsCreateKeyedFile()ò.

-60 FDSERR_CONFIG

Explanation: The component required to support the API that returned

this error is not installed or is not configured. These APIs are associated

with this error:

¶ ñFdsActivateAsPrimary()ò

¶ ñFdsAddDomainNode()ò

¶ ñFdsCreateBcastDomain()ò

¶ ñFdsCreateSyncID()ò

¶ ñFdsDeactivatePrimary()ò

¶ ñFdsDeleteBcastDomain()ò

¶ ñFdsDeleteDomainNode()ò

¶ ñFdsGetDomainList()ò

¶ ñFdsGetDomainNodes()ò

¶ ñFdsQueryBackupState()ò

¶ ñFdsQueryDistribution()ò

¶ ñFdsSetDistribution()ò

¶ ñFdsSetupDistMonitor()ò

¶ ñFdsSetupSyncIDNotify()ò

-70 FDSERR_CORRUPT

Explanation : Damaged data was detected or created. Specific conditions

for this error include:

¶ ñFdsOpenSeqFile()ò was called and the file is not the correct format for

a sequential file.

¶ ñFdsReadSeqRecord()ò was called and the next record is not the

correct format for a sequential record.

¶ ñFdsWriteSeqRecord()ò was called and a partial record was written to

disk.

¶ ñFdsOpenKeyedFile()ò was called and the file is not the correct format

for a keyed file.

¶ Damaged data was detected in the file.

 ïñFdsDeleteKeyedRecord()ò

 ïñFdsReadKeyedRecord()ò

 ïñFdsReleaseKeyedRecord()ò

 ïñFdsWriteKeyedRecord()ò

¶ ñFdsQueryDistribution()ò was called and damaged data was
detected in the distribution directory. Recovery from this error requires
that a new distribution directory be created. Follow these steps if the
damaged distribution directory is on the acting backup distributor or a
subordinate node.
DDS should be started on the acting primary distributor:

1. Stop DDS if it is running on the node on which the error exists.

2. Erase all of the distribution directory files from the node where the

error exists.

3. Start DDS on the node where the error exists. The DDS reconciler

will copy all of the distributed files from the acting primary

distributor and rebuild the distribution directory.

If this error occurs on the acting primary distributor, the acting primary
distributor must be deactivated and stopped. Next, the acting backup
distributor must be activated as the acting primary distributor. The steps
listed above can then be followed to recover the damaged distribution
directory.

-75 FDSERR_DATE_TIME

Explanation: A date or time that is not valid was specified to
ñFdsSetFileAttributes()ò.

-80 FDSERR_DIR_INDICATOR

Explanation: A directory indicator that is not valid was specified to

ñFdsSetDistribution()ò.

-90 FDSERR_DISK

Explanation: An error occurred while writing the distribution information

manager to disk. These APIs are associated with this error:

¶ ñFdsDeleteBcastDomain()ò

¶ ñFdsDeleteDomainNode()ò

¶ ñFdsQueryFileSystemInfo()ò

¶ ñFdsSetDistribution()ò

-100 FDSERR_DISK_FULL

Explanation: The disk is full. These APIs are associated with this error:

¶ ñFdsWriteSeqRecord()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsWriteBinFile()ò

¶ ñFdsSetBinFileSize()ò

-110 FDSERR_DIST_FREQ

Explanation: A distribution frequency that is not valid was specified to

ñFdsSetDistribution()ò.

-120 FDSERR_DOMAIN_NAME

Explanation: A domain name that is not valid was specified. These APIs

are associated with this error:

¶ ñFdsAddDomainNode()ò

¶ ñFdsBroadcastQ()ò

¶ ñFdsCreateBcastDomain()ò

¶ ñFdsDeleteBcastDomain()ò

¶ FdsDeleteDomainNode()ò

¶ ñFdsGetDomainNodes()ò

¶ ñFdsSetDistribution()ò

-130 FDSERR_DOMAIN_NOT_FOUND

Explanation: The domain does not exist. These APIs are associated with

this error:

¶ ñFdsAddDomainNode()ò

¶ ñFdsDeleteBcastDomain()ò

¶ The handle is not a valid queue handle. These APIs are associated

with this error:

ïñFdsCloseQ()ò

ïñFdsLockQ()ò

-ñFdsPurgeMsg()ò

ïñFdsQueryQ()ò

ïñFdsReadQ()ò

ïñFdsUnlockQ()ò

ïñFdsWriteQ()ò

¶ The handle is not a valid, binary-file handle. These APIs are associated

with this error:

 ïñFdsCloseBinFile()ò

 ïñFdsFlushBinFile()ò

 ïñFdsSetBinFileSize()ò

 ïñFdsQueryBinFileSize()ò

 ïñFdsReadBinFile()ò

 ïñFdsSeekBinFilePos()ò

 ïñFdsSetBinFileLocks()ò

 ïñFdsWriteBinFile()ò

-140 FDSERR_DOMAIN_TYPE
Explanation: A domain type that is not valid was specified to
ñFdsSetDistribution()ò.

-150 FDSERR_DOWN
Explanation: DDS was not started, is shutting down, or has shut down. If
your application had already successfully completed either an FdsInit() or
FdsInit2() call, the application must be shut down and restarted in order to
successfully reinitialize.

-160 FDSERR_EOF
Explanation: The end of the file has been reached. Specific conditions for
this error include:

¶ There are no more valid records in the file. These APIs are associated
with this error:
ï ñFdsFindNextSeqRecord()ò
ï ñFdsReadSeqRecord()ò

¶ ñFdsReadBinFile()ò was called and the value specified by
NBytesPtr is greater than the number of bytes read.

-170 FDSERR_EXISTS
Explanation: An object exists. Specific conditions for this error include:

¶ ñFdsActivateAsPrimary()ò was called and another node is
currently the acting primary distributor.

¶ ñFdsRenameFile()ò was called and the target file exists.

¶ ñFdsCreateKeyedFile()ò was called; FDS_FILE_EXIST_FAIL

as specified and the file exists.

¶ ñFdsSetDistribution()ò was called and changing the

broadcast domain name for a distributed file or subdirectory is not
allowed.

¶ ñFdsCreateBcastDomain()ò was called and a broadcast
domain already exists, a node ID was specified more than once, or this
node ID was assigned to more domains than are currently supported by
DDS.

¶ ñFdsAddDomainNode()ò was called and the node is already
a member of the domain.

¶ ñFdsCreateLogicNm()ò was called and the logical name
already exists.

¶ ñFdsSetResetRole()ò was called and the role is already
active on the node.

¶ ñFdsCreateQ()ò was called and the queue already exists.

¶ ñFdsInit()ò or ñFdsInit2()ò was called and a
resource that was needed could not be obtained. See the Event Viewer
for detail

-180 FDSERR_FILE_FULL
Explanation: The keyed file is full. No additional records can be added to
the file. Space will become available as existing records are deleted. To
increase the capacity of the file, it must be rebuilt specifying a larger file
size (that is, a larger number of blocks, a larger block size, or both). This
error is associated with ñFdsWriteKeyedRecord()ò.

-190 FDSERR_FILE_NAME
Explanation: The file or path name is not valid. These APIs are associated
with this error:

¶ ñFdsCreateDir()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsExistFile()ò

¶ ñFdsGetFileAttributes()ò

¶ ñFdsGetFileNames()ò

¶ ñFdsOpenBinFile()ò

¶ ñFdsOpenSeqFile()ò

¶ ñFdsOpenKeyedFile()ò

¶ ñFdsQueryFileSystemInfo()ò

¶ ñFdsQueryDistribution()ò

¶ ñFdsRemoveDir()ò

¶ ñFdsRenameFile()ò

¶ ñFdsRestrictFile()ò

¶ ñFdsSetFileAttributes()ò

¶ ñFdsUnrestrictFile()ò

¶ ñFdsSetDistribution()ò

¶ ñFdsSetDistribution()ò was called and:
ï The drive specified by the path is not valid.
ï The file or path name refers to a file or subdirectory that is not on a

 controlled drive and therefore cannot be distributed.

-200 FDSERR_FILE_NOT_FOUND
Explanation: The file, path, or directory does not exist. If you are using the
Name Services component, verify that the resolved name is correct.
Specific conditions for this error include:

¶ The file or path does not exist on disk. These APIs are associated with
this error:
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsGetFileNames()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsSetFileAttributes()ò

¶ ñFdsRenameFile()ò was called and the source file, source
path, or the target path does not exist on disk.

¶ The path does not exist on disk. These APIs are associated with this
error:
ï ñFdsCreateKeyedFile()ò
ï ñFdsOpenSeqFile()ò

¶ ñFdsSetDistribution()ò was called, and either the file or
directory does not exist on the disk, or the root directory has been
specified.

¶ ñFdsQueryDistribution()ò was called and the file or directory
was not found in the distribution directory. It is possible that the file or
directory is not distributed or that it is distributed but only as a result of
being in a distributed directory.

¶ ñFdsInit()ò or ñFdsInit2()ò was called and a
resource that was needed could not be obtained. See the Event Viewer
for details.

¶ Files are contained in the directory; the directory is not empty. These
APIs are associated with this error:
ï ñFdsCreateDir()ò
ï ñFdsRemoveDir()ò

-210 FDSERR_FLAG
Explanation: A flag that is not valid was specified. These APIs are
associated with this error:

¶ ñFdsActivateAsPrimary()ò

¶ ñFdsCloseKeyedFile()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsInit2()ò

¶ ñFdsOpenBinFile()ò

¶ ñFdsOpenKeyedFile()ò

¶ ñFdsOpenSeqFile()ò

¶ ñFdsReadKeyedRecord()ò

¶ ñFdsSetBinFileLocks()ò

¶ ñFdsSetFileAttributes()ò

¶ ñFdsSetResetRole()ò

¶ ñFdsWriteKeyedRecord()ò

¶ ñFdsWriteQ()ò

-220 FDSERR_HANDLE
Explanation: A handle that is not valid was specified. Specific conditions
for this error include:

¶ The handle is not a valid, sequential-file handle. These APIs are
associated with this error:
ï ñFdsCloseSeqFile()ò
ï ñFdsFindNextSeqRecord()ò
ï ñFdsReadSeqRecord()ò
ï ñFdsReturnSeqFilePos()ò
ï ñFdsSeekSeqFilePos()ò
ï ñFdsWriteSeqRecord()ò

¶ The handle is not a valid, keyed-file handle. These APIs are associated
with this error:
ï ñFdsCloseKeyedFile()ò
ï ñFdsDeleteKeyedRecord()ò
ï ñFdsReadKeyedRecord()ò
ï ñFdsReleaseKeyedRecord()ò
ï ñFdsWriteKeyedRecord()ò

¶ ñFdsCreateSyncID()ò was called and the handle is not a
valid sequential- or keyed-file handle.

¶ The handle is not a valid queue handle. These APIs are associated with
this error:
ï ñFdsCloseQ()ò
ï ñFdsLockQ()ò
ï ñFdsPurgeMsg()ò
ï ñFdsQueryQ()ò
ï ñFdsReadQ()ò
ï ñFdsUnlockQ()ò
ï ñFdsWriteQ()ò

¶ The handle is not a valid, binary-file handle. These APIs are associated
with this error:
ï ñFdsCloseBinFile()ò
ï ñFdsFlushBinFile()ò
ï ñFdsSetBinFileSize()ò
ï ñFdsQueryBinFileSize()ò
ï ñFdsReadBinFile()ò
ï ñFdsSeekBinFilePos()ò
ï ñFdsSetBinFileLocks()ò
ï ñFdsWriteBinFile()ò

-222 FDSERR_HANDLE_FORCED_CLOSED

Explanation: A handle to a file that has been restricted has been

specified. When file access to a file has been restricted using

FdsRestrictFile(), file handles to that file cannot be specified. To resolve

this error:

1. Close the file handle.

2. Remove access restrictions to the file using FdsUnrestrictFile().

3. Open a new file handle to the file.

These APIs are associated with this error:

¶ ñFdsCloseBinFile()ò

¶ ñFdsCloseKeyedFile()ò

¶ ñFdsCloseSeqFile()ò

¶ ñFdsDeleteKeyedRecord()ò

¶ ñFdsFlushBinFile()ò

¶ ñFdsReadBinFile()ò

¶ ñFdsReadKeyedRecord()ò

¶ ñFdsReadSeqRecord()ò

¶ ñFdsReleaseKeyedRecord()ò

¶ ñFdsRestrictFile()ò

¶ ñFdsReturnSeqFilePos()ò

¶ ñFdsSeekBinFilePos()ò

¶ ñFdsSeekSeqFilePos()ò

¶ ñFdsSetBinFileLocks()ò

¶ ñFdsWriteBinFile()ò

¶ ñFdsWriteKeyedRecord()ò

¶ ñFdsWriteSeqRecord()ò

-230 FDSERR_INIT

Explanation: Initialization has not occurred or has failed. Be sure that you

have initiated the FdsInit() or FdsInit2() API before using any other APIs.

-240 FDSERR_INTERNAL

Explanation: An internal error occurred. Contact your IBM representative.

-250 FDSERR_INTERRUPT
Explanation: An API call was interrupted and was not completed.

-260 FDSERR_IO
Explanation: An error occurred while accessing a physical I/O device.
These APIs are associated with this error:

¶ ñFdsCloseKeyedFile()ò (returned only if
FDS_FILE_RESET_YES is specified)

¶ ñFdsCreateDir()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsDeleteFile()ò

¶ ñFdsDeleteKeyedRecord()ò

¶ ñFdsExistFile()ò

¶ ñFdsFindNextSeqRecord()ò

¶ ñFdsFlushBinFile()ò

¶ ñFdsGetFileAttributes()ò

¶ ñFdsGetFileNames()ò

¶ ñFdsOpenBinFile()ò

¶ ñFdsOpenKeyedFile()ò

¶ ñFdsOpenSeqFile()ò

¶ ñFdsQueryBinFileSize()ò

¶ ñFdsQueryFileSystemInfo()ò

¶ ñFdsReadBinFile()ò

¶ ñFdsReadKeyedRecord()ò

¶ ñFdsReadSeqRecord()ò

¶ ñFdsRemoveDir()ò

¶ ñFdsRenameFile()ò

¶ ñFdsRestrictFile()ò

¶ ñFdsSetBinFileSize()ò

¶ ñFdsSetFileAttributes()ò

¶ ñFdsUnrestrictFile()ò

¶ ñFdsWriteBinFile()ò

¶ ñFdsWriteKeyedRecord()ò

¶ ñFdsWriteSeqRecord()ò

-270 FDSERR_KEY

Explanation: The key is not valid. Null keys are not allowed. These APIs

are associated with this error:

¶ ñFdsDeleteKeyedRecord()ò

¶ ñFdsReadKeyedRecord()ò

¶ ñFdsReleaseKeyedRecord()ò

¶ ñFdsWriteKeyedRecord()ò

-280 FDSERR_KEY_NOT_FOUND

Explanation: The key does not exist in the file. These APIs are associated

with this error:

¶ ñFdsDeleteKeyedRecord()ò

¶ ñFdsReadKeyedRecord()ò

¶ ñFdsReleaseKeyedRecord()ò

-290 FDSERR_KEY_SIZE
Explanation: The key size is not valid. Specific conditions for this error
include:

¶ ñFdsCreateKeyedFile()ò was called and the key size is out of
range.

¶ The key size does not match the size specified when the file was
created. These APIs are associated with this error:
ï ñFdsDeleteKeyedRecord()ò
ï ñFdsReadKeyedRecord()ò
ï ñFdsReleaseKeyedRecord()ò
ï ñFdsWriteKeyedRecord()ò

-300 FDSERR_LOGICAL_NAME

Explanation: The logical name or input string is not valid. One of the

following conditions could have caused the error:

¶ The string is too long.

¶ The string is not null terminated.

¶ The string contains a delimiter mismatch.

Specific conditions for this error include:

¶ The input string is not valid. The string contains more than two colons

at the end of a role name or node ID. These APIs are associated with

this error:

ïñFdsBroadcastQ()ò
ï ñFdsCreateDir()ò
ï ñFdsCreateKeyedFile()ò
ï ñFdsCreateQ()ò
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsGetFileNames()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenQ()ò
ï ñFdsOpenSeqFile()ò
ï ñFdsQueryDistribution()ò
ï ñFdsQueryFileSystemInfo()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsResolveLogicNm()ò
ï ñFdsRestrictFile()ò
ï ñFdsSetDistribution()ò
ï ñFdsSetFileAttributes()ò
ï ñFdsUnrestrictFile()ò

¶ The logical name is not valid. One of the following conditions could

have caused the error:

ïThe string contains double colons.

ïThe string begins with the characters FDS.

ïThe string does not match the form <name> where the less-than and

 greater-than characters (< and >) are required delimiters.

These APIs are associated with this error:

¶ ñFdsCreateLogicNm()ò

¶ ñFdsDeleteLogicNm()ò

¶ ñFdsChangeLogicNm()ò

-310 FDSERR_LOGICAL_NAME_NOT_FOUND

Explanation: The logical name is not defined. These APIs are associated
with this error:

¶ ñFdsCreateDir()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsCreateQ()ò

¶ ñFdsDeleteFile()ò

¶ ñFdsExistFile()ò

¶ ñFdsGetFileAttributes()ò

¶ ñFdsGetFileNames()ò

¶ ñFdsOpenBinFile()ò

¶ ñFdsOpenKeyedFile()ò

¶ ñFdsOpenQ()ò

¶ ñFdsOpenSeqFile()ò

¶ ñFdsQueryDistribution()ò

¶ ñFdsQueryFileSystemInfo()ò

¶ ñFdsRemoveDir()ò

¶ ñFdsRenameFile()ò

¶ ñFdsResolveLogicNm()ò

¶ ñFdsRestrictFile()ò

¶ ñFdsSetDistribution()ò

¶ ñFdsSetFileAttributes()ò

¶ òFdsUnrestrictFile()ò

¶ ñFdsRenameFile()ò

¶ ñFdsOpenSeqFile()ò

¶ ñFdsOpenKeyedFile()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsOpenQ()ò

¶ ñFdsBroadcastQ()ò

¶ ñFdsCreateQ()ò

¶ ñFdsSetDistribution()ò

¶ ñFdsQueryDistribution()ò

¶ ñFdsDeleteLogicNm()ò

¶ ñFdsChangeLogicNm()ò

¶ ñFdsResolveLogicNm()ò
¶ ñFdsOpenBinFile()ò

-320 FDSERR_MEMORY

Explanation: DDS or the operating system is out of memory. To increase
the available memory for DDS, use the MaximumMemory configuration
keyword and restart DDS. To increase the available memory for the
operating system, refer to the operating system documentation.

-325 FDSERR_MEMORY_CONSTRAINED

Explanation: DDS is in a low-memory condition on the target node of this
operation. Use the MaximumMemory configuration keyword to allocate
more memory and restart DDS on the target node. For example, if your
application issued ñFdsWriteQ()ò to a queue on a remote node
and received this error code, the low-memory problem exists on the remote
node.

-330 FDSERR_MESSAGE_SIZE
Explanation: A message size that was not valid was specified to
FdsWriteQ() or FdsBroadcastQ().

-340 FDSERR_NODE_NAME

Explanation: A node ID was specified that is not valid. These APIs are
associated with this error:

¶ ñFdsAddDomainNode()ò

¶ ñFdsCreateBcastDomain()ò

¶ ñFdsCreateDir()ò

¶ ñFdsCreateKeyedFile()ò

¶ ñFdsDeleteDomainNode()ò

¶ ñFdsDeleteFile()ò

¶ ñFdsExistFile()ò

¶ ñFdsGetFileAttributes()ò

¶ ñFdsOpenBinFile()ò

¶ ñFdsOpenKeyedFile()ò

¶ ñFdsOpenQ()ò

¶ ñFdsOpenSeqFile()ò

¶ ñFdsQueryFileSystemInfo()ò

¶ ñFdsRemoveDir()ò

¶ ñFdsRenameFile()ò

¶ ñFdsRestrictFile()ò

¶ ñFdsSetFileAttributes()ò

¶ ñFdsUnrestrictFile()ò

-350 FDSERR_NODE_NOT_FOUND
Explanation: Communication with a node could not be established or was lost, or the node

does not exist. The list below describes the specific condition for this error for each API.

¶ Communication with the node could not be established. The node might
not exist, might be malfunctioning, or might not be configured as a file
server. These APIs are associated with this error:
ïñFdsCreateDir()ò
ïñFdsCreateKeyedFile()ò
ïñFdsDeleteFile()ò
ïñFdsExistFile()ò
ïñFdsGetFileAttributes()ò
ïñFdsGetFileNames()ò
ïñFdsOpenBinFile()ò
ïñFdsOpenKeyedFile()ò
ïñFdsOpenQ()ò
ïñFdsOpenSeqFile()ò
ïñFdsQueryBinFileSize()ò
ïñFdsQueryFileSystemInfo()ò
ïñFdsRemoveDir()ò
ïñFdsRenameFile()ò
ïñFdsRestrictFile()ò
ïñFdsSetBinFileSize()ò
ïñFdsSetFileAttributes()ò
ïñFdsUnrestrictFile()ò

¶ Communication with the node has been lost. The file must be closed.
These APIs are associated with this error:
 ïñFdsCloseBinFile()ò

 ïñFdsCloseKeyedFile()ò (returned only if FDS_CLOSE_TYPE_FLUSH was
 specified.)
ïñFdsCreateSyncID()ò
ïñFdsCreateSyncID()ò
 ïñFdsDeleteKeyedRecord()ò
 ïñFdsFindNextSeqRecord()ò
 ïñFdsFlushBinFile()ò
 ïñFdsQueryBinFileSize()ò
 ïñFdsReadBinFile()ò
 ïñFdsReadKeyedRecord()ò
 ïñFdsReadSeqRecord()ò
 ïñFdsReleaseKeyedRecord()ò
 ïñFdsReturnSeqFilePos()ò
 ïñFdsSeekBinFilePos()ò
 ïñFdsSeekSeqFilePos()ò
 ïñFdsSetBinFileLocks()ò
 ïñFdsSetBinFileSize()ò
 ïñFdsWriteBinFile()ò
 ïñFdsWriteKeyedRecord()ò
 ïñFdsWriteSeqRecord()ò

-360 FDSERR_NODE_TYPE
Explanation: The specified operation is not allowed on this node. Specific
conditions for this error include:

¶ This operation is valid only on the acting primary distributor. These APIs are
associated with this error:
ï ñFdsAddDomainNode()ò
ï ñFdsCreateBcastDomain()ò
ï ñFdsDeactivatePrimary()ò
ï ñFdsDeleteBcastDomain()ò
ï ñFdsDeleteDomainNode()ò
ï ñFdsGetDomainList()ò
ï ñFdsGetDomainNodes()ò
ï ñFdsQueryBackupState()ò
ï ñFdsQueryDistribution()ò
ï ñFdsSetDistribution()ò

¶ ñFdsActivateAsPrimary()ò was called and this operation is
valid only on the configured backup distributor or configured primary
distributor when neither is the acting primary distributor.

¶ ñFdsSetupDistMonitor()ò was called and this operation is
valid only on the acting primary distributor or acting backup distributor.

¶ An attempt was made to obtain write access to the image copy of a
distributed file (returned only if FDS_FILE_ACCESS_READ_WRITE was
specified). These APIs are associated with this error:
ï ñFdsCreateKeyedFile()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò

¶ An attempt was made to update the image copy of a distributed file. These
APIs are associated with this error:
ï ñFdsDeleteFile()ò
ï ñFdsDeleteKeyedRecord()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsSetBinFileSize()ò
ï ñFdsWriteBinFile()ò

ï ñFdsWriteKeyedRecord()ò
ï ñFdsWriteSeqRecord()ò

-370 FDSERR_NOTIFY_QUEUE
Explanation: A notification queue handle that is not valid was specified to
ñFdsOpenQ()ò. Possible problems are:

¶ The queue with which the queue handle is associated has been closed.

¶ The specified queue handle has not been initialized (using ñFdsCreateQ()ò).

¶

-375 FDSERR_NOT_DISTRIBUTED
Explanation: The file or directory is not distributed. This error is associated
with ñFdsCreateSyncID()ò and ñFdsSetDistribution()ò.

-380 FDSERR_NOT_RECONCILED
Explanation: The acting backup distributor is not fully reconciled. This error
is associated with ñFdsActivateAsPrimary()ò and
ñFdsDeactivatePrimary()ò.

-390 FDSERR_NUM_BLOCKS
Explanation: A number of blocks that is not valid was specified to
ñFdsCreateKeyedFile()ò.

-400 FDSERR_OS
Explanation: An unexpected, operating-system condition occurred. See the
event logs for details.

-410 FDSERR_OVERFLOW
Explanation: An internal buffer has reached its capacity. Specific conditions
for this error include:

¶ The logical-name resolution was too complex or the system is out of file
 handles. One of the following conditions could have caused the error:

ï The input string resolves to a recursive, logical-name definition.
ï The input string takes more than 500 logical-name resolutions to

 completely resolve.
ï The output string was longer than 2 times the maximum path length

 allowed by the operating system.

These APIs are associated with this error:
ï ñFdsBroadcastQ()ò
ï ñFdsCreateDir()ò
ï ñFdsCreateKeyedFile()ò
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsGetFileNames()ò
ï ñFdsOpenBinFile()ò

ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò
ï ñFdsQueryDistribution()ò
ï ñFdsQueryFileSystemInfo()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsRestrictFile()ò
ï ñFdsSetDistribution()ò
ï ñFdsSetFileAttributes()ò
ï ñFdsUnrestrictFile()ò

¶ ñFdsResolveLogicNm()ò was called and the logical-name
 resolution was too complex. One of the following conditions could have
 caused the error:
 ï The input string resolves to a recursive, logical-name definition.
 ï The input string takes more than 500 logical name resolutions to
 completely resolve.
 ï The output string was longer than 2 times the maximum path length
 allowed by the operating system.
 The partially resolved name is returned.

¶ The logical name resolution was too complex or the system is out of
queue handles. These APIs are associated with this error:
ï ñFdsCreateQ()ò
ï ñFdsOpenQ()ò

-420 FDSERR_QUEUE_CLOSED
Explanation: The queue no longer exists. The queue handle must be
closed. These APIs are associated with this error:

¶ ñFdsReadQ()ò

¶ ñFdsWriteQ()ò

-430 FDSERR_QUEUE_EMPTY
Explanation: There are no more messages in the queue. These APIs are
associated with this error:

¶ ñFdsPurgeMsg()ò

¶ ñFdsReadQ()ò

-440 FDSERR_QUEUE_FULL
Explanation: ñFdsWriteQ()ò was called and the queue is full.
Your request has timed out and the message was not written to the queue
as a result of one of the following conditions:

¶ There was not enough space available in the queue for your message.

¶ The queue was blocked by another write request.

A queue becomes blocked when a write request is received with the
WaitConfirm parameter set to FDS_WRITTEN, but there is not enough
space in the destination queue for the message. While a queue is
blocked, all subsequent write requests become blocked, in the order that
the write requests were received. As space becomes available in the
queue, IPC completes the blocked write requests in the order that they
were blocked. When IPC has completed all of the blocked write requests,

the queue is no longer blocked.

-450 FDSERR_QUEUE_NAME
Explanation: A queue name that is not valid was specified. Specific
conditions for this error include:

¶ Either the specified queue name begins with the letters FDS, or the
specified queue name or resolved logical name exceeds the maximum
queue name length. These APIs are associated with this error:
ï ñFdsCreateQ()ò
ï ñFdsOpenQ()ò

¶ FdsBroadcastQ()ò was called and the queue name was not
a string, or it was a null string.

-460 FDSERR_QUEUE_NOT_FOUND
Explanation: The queue does not exist. The list below describes the
specific condition for this error for each API.

¶ ñFdsOpenQ()ò was called and the queue does not exist on
the specified node.

¶ At the file server, the MaxRequesters keyword must be set to the

number of workstations requesting file services. These APIs are
associated with this error:
ï ñFdsCreateDir()ò
ï ñFdsCreateKeyedFile()ò
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò
ï ñFdsQueryFileSystemInfo()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsRestrictFile()ò
ï ñFdsSetFileAttributes()ò
ï ñFdsUnrestrictFile()ò

-470 FDSERR_QUEUE_SIZE
Explanation: A queue size that is not valid was specified to ñFdsCreateQ()ò
.

-480 FDSERR_RAND_DIV
Explanation: A randomizing divisor that is not valid was specified to
ñFdsCreateKeyedFile()ò.

-490 FDSERR_REC_SIZE
Explanation: A record size that is not valid was specified. Specific
conditions for this error include:

¶ The record size is out of range. These APIs are associated with this
error:
ï ñFdsCreateKeyedFile()ò

ï ñFdsReadBinFile()ò
ï ñFdsReadKeyedRecord()ò
ï ñFdsWriteBinFile()ò
ï ñFdsWriteSeqRecord()ò

¶ ñFdsWriteKeyedRecord()ò was called and the record size
does not match the size that was specified when the file was created.

-500 FDSERR_REMOTE
Explanation: A remote object was specified or remote communication was
requested when remote IPC has not been configured. Specific conditions
for this error include:

¶ ñFdsResolveLogicNm()ò was called and a non-local node ID
or role name was encountered. The string that caused the error is
returned.

¶ ñFdsCreateQ()ò was called and a non-local queue name
was specified. Queues can be created locally only.

¶ A non-local queue name was specified and remote communication is not
configured. These APIs are associated with this error:
ï ñFdsOpenQ()ò
ï ñFdsWriteQ()ò

¶ ñFdsBroadcastQ()ò was called and remote communication is
not configured.

¶ A non-local file or directory was specified. These APIs are associated
with this error:
ï ñFdsQueryDistribution()ò
ï ñFdsSetDistribution()ò

-510 FDSERR_RESOLVED_NAME
Explanation: A definition that is not valid was provided for a logical name.
One of the following conditions could have caused the error:

¶ The string is too long.

¶ The string is not null terminated.

¶ The string contains a delimiter mismatch.
These APIs are associated with this error:

¶ ñFdsChangeLogicNm()ò

¶ ñFdsCreateLogicNm()ò

-520 FDSERR_RESOURCE
Explanation: The application has too many concurrent requests running.

-530 FDSERR_ROLE_CHANGE
Explanation: The handle was associated with a role that has moved.
Specific conditions for this error include:

¶ Either the file was opened with a role that has moved or the prime copy
of a distributed file was opened and the acting primary distributor has
been deactivated. The file must be closed.
These APIs are associated with this error:
ï ñFdsCreateSyncID()ò

ï ñFdsDeleteKeyedRecord()ò
ï ñFdsFindNextSeqRecord()ò
ï ñFdsFlushBinFile()ò
ï ñFdsQueryBinFileSize()ò
ï ñFdsReadBinFile()ò
ï ñFdsReadKeyedRecord()ò
ï ñFdsReadSeqRecord()ò
ï ñFdsReleaseKeyedRecord()ò
ï ñFdsReturnSeqFilePos()ò
ï ñFdsSeekBinFilePos()ò
ï ñFdsSeekSeqFilePos()ò
ï ñFdsSetBinFileLocks()ò
ï ñFdsSetBinFileSize()ò
ï ñFdsWriteBinFile()ò
ï ñFdsWriteKeyedRecord()ò
ï ñFdsWriteSeqRecord()ò

¶ ñFdsWriteQ()ò was called and

¶ This operation is valid only on the acting primary distributor. These APIs
are associated with this error:
ï ñFdsAddDomainNode()ò
ï ñFdsCreateBcastDomain()ò
ï ñFdsDeactivatePrimary()ò
ï ñFdsDeleteBcastDomain()ò
ï ñFdsDeleteDomainNode()ò
ï ñFdsGetDomainList()ò
ï ñFdsGetDomainNodes()ò
ï ñFdsQueryBackupState()ò
ï ñFdsQueryDistribution()ò
ï ñFdsSetDistribution()ò

¶ ñFdsActivateAsPrimary()ò was called and this operation is
valid only on the configured backup distributor or configured primary

distributor when neither is the acting primary distributor.

¶ ñFdsSetupDistMonitor()ò was called and this operation is
valid only on the acting primary distributor or acting backup distributor.

¶ An attempt was made to obtain write access to the image copy of a
distributed file (returned only if FDS_FILE_ACCESS_READ_WRITE was
specified). These APIs are associated with this error:
ï ñFdsCreateKeyedFile()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò

¶ An attempt was made to update the image copy of a distributed file.
These APIs are associated with this error:
ï ñFdsDeleteFile()ò
ï ñFdsDeleteKeyedRecord()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsSetBinFileSize()ò
ï ñFdsWriteBinFile()ò
ï ñFdsWriteKeyedRecord()ò
ï ñFdsWriteSeqRecord()ò

-370 FDSERR_NOTIFY_QUEUE
Explanation: A notification queue handle that is not valid was specified to

ñFdsOpenQ()ò. Possible problems are:

¶ The queue with which the queue handle is associated has been closed.

¶ The specified queue handle has not been initialized (using
ñFdsCreateQ()ò).

-375 FDSERR_NOT_DISTRIBUTED
Explanation: The file or directory is not distributed. This error is associated
with ñFdsCreateSyncID()ò and ñFdsSetDistribution()ò.

-380 FDSERR_NOT_RECONCILED
Explanation: The acting backup distributor is not fully reconciled. This error
is associated with ñFdsActivateAsPrimary()ò and
ñFdsDeactivatePrimary()ò.

-390 FDSERR_NUM_BLOCKS
Explanation: A number of blocks that is not valid was specified to
ñFdsCreateKeyedFile()ò.

-400 FDSERR_OS
Explanation: An unexpected, operating-system condition occurred. See the
event logs for details.

-410 FDSERR_OVERFLOW
Explanation: An internal buffer has reached its capacity. Specific conditions
for this error include:

¶ The logical-name resolution was too complex or the system is out of file
handles. One of the following conditions could have caused the error:
ï The input string resolves to a recursive, logical-name definition.
ï The input string takes more than 500 logical-name resolutions to
 completely resolve.
ï The output string was longer than 2 times the maximum path length allowed
 by the operating system.
These APIs are associated with this error:
ï ñFdsBroadcastQ()ò
ï ñFdsCreateDir()ò
ï ñFdsCreateKeyedFile()ò
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsGetFileNames()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò
ï ñFdsQueryDistribution()ò
ï ñFdsQueryFileSystemInfo()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò

ï ñFdsRestrictFile()ò
ï ñFdsSetDistribution()ò
ï ñFdsSetFileAttributes()ò
ï ñFdsUnrestrictFile()ò

¶ ñFdsResolveLogicNm()ò was called and the logical-name
resolution was too complex. One of the following conditions could have
caused the error:
ï The input string resolves to a recursive, logical-name definition.
ï The input string takes more than 500 logical name resolutions to
 completely resolve.
ï The output string was longer than 2 times the maximum path length
 allowed by the operating system.
The partially resolved name is returned.

¶ The logical name resolution was too complex or the system is out of
queue handles. These APIs are associated with this error:
ï ñFdsCreateQ()ò
ï ñFdsOpenQ()ò

-420 FDSERR_QUEUE_CLOSED
Explanation: The queue no longer exists. The queue handle must be
closed. These APIs are associated with this error:

¶ ñFdsReadQ()ò

¶ ñFdsWriteQ()ò

-430 FDSERR_QUEUE_EMPTY
Explanation: There are no more messages in the queue. These APIs are
associated with this error:

¶ ñFdsPurgeMsg()ò

¶ ñFdsReadQ()ò

-440 FDSERR_QUEUE_FULL
Explanation: ñFdsWriteQ()ò was called and the queue is full.
Your request has timed out and the message was not written to the queue
as a result of one of the following conditions:

¶ There was not enough space available in the queue for your message.

¶ The queue was blocked by another write request.

A queue becomes blocked when a write request is received with the
WaitConfirm parameter set to FDS_WRITTEN, but there is not enough
space in the destination queue for the message. While a queue is
blocked, all subsequent write requests become blocked, in the order that
the write requests were received. As space becomes available in the
queue, IPC completes the blocked write requests in the order that they
were blocked. When IPC has completed all of the blocked write requests,
the queue is no longer blocked.

-450 FDSERR_QUEUE_NAME
Explanation: A queue name that is not valid was specified. Specific
conditions for this error include:

¶ Either the specified queue name begins with the letters FDS, or the
specified queue name or resolved logical name exceeds the maximum
queue name length. These APIs are associated with this error:
ï ñFdsCreateQ()ò
ï ñFdsOpenQ()ò

¶ ñFdsBroadcastQ()ò was called and the queue name was not
a string, or it was a null string.

-460 FDSERR_QUEUE_NOT_FOUND
Explanation: The queue does not exist. The list below describes the
specific condition for this error for each API.

¶ ñFdsOpenQ()ò was called and the queue does not exist on
the specified node.

¶ At the file server, the MaxRequesters keyword must be set to the
number of workstations requesting file services. These APIs are
associated with this error:
ï ñFdsCreateDir()ò
ï ñFdsCreateKeyedFile()ò
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenSeqFile()ò
ï ñFdsQueryFileSystemInfo()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsRestrictFile()ò
ï ñFdsSetFileAttributes()ò
ï ñFdsUnrestrictFile()ò

-470 FDSERR_QUEUE_SIZE
Explanation: A queue size that is not valid was specified to ñFdsCreateQ()ò
.

-480 FDSERR_RAND_DIV
Explanation: A randomizing divisor that is not valid was specified to
ñFdsCreateKeyedFile()ò.

-490 FDSERR_REC_SIZE
Explanation: A record size that is not valid was specified. Specific
conditions for this error include:

¶ The record size is out of range. These APIs are associated with this
error:
ï ñFdsCreateKeyedFile()ò
ï ñFdsReadBinFile()ò
ï ñFdsReadKeyedRecord()ò
ï ñFdsWriteBinFile()ò
ï ñFdsWriteSeqRecord()ò

¶ ñFdsWriteKeyedRecord()ò was called and the record size

does not match the size that was specified when the file was created.

-500 FDSERR_REMOTE
Explanation: A remote object was specified or remote communication was
requested when remote IPC has not been configured. Specific conditions
for this error include:

¶ ñFdsResolveLogicNm()ò was called and a non-local node ID
or role name was encountered. The string that caused the error is
returned.

¶ ñFdsCreateQ()ò was called and a non-local queue name
was specified. Queues can be created locally only.

¶ A non-local queue name was specified and remote communication is not
configured. These APIs are associated with this error:
ï ñFdsOpenQ()ò
ï ñFdsWriteQ()ò

¶ ñFdsBroadcastQ()ò was called and remote communication is
not configured.

¶ A non-local file or directory was specified. These APIs are associated
with this error:
ï ñFdsQueryDistribution()ò
ï ñFdsSetDistribution()ò

-510 FDSERR_RESOLVED_NAME
Explanation: A definition that is not valid was provided for a logical name.
One of the following conditions could have caused the error:

¶ The string is too long.

¶ The string is not null terminated.

¶ The string contains a delimiter mismatch.
These APIs are associated with this error:

¶ ñFdsChangeLogicNm()ò

¶ ñFdsCreateLogicNm()ò

¶

-520 FDSERR_RESOURCE
Explanation: The application has too many concurrent requests running.

-530 FDSERR_ROLE_CHANGE
Explanation: The handle was associated with a role that has moved.
Specific conditions for this error include:

¶ Either the file was opened with a role that has moved or the prime copy
of a distributed file was opened and the acting primary distributor has
been deactivated. The file must be closed.
These APIs are associated with this error:
ï ñFdsCreateSyncID()ò
ï ñFdsDeleteKeyedRecord()ò
ï ñFdsFindNextSeqRecord()ò
ï ñFdsFlushBinFile()ò
ï ñFdsQueryBinFileSize()ò
ï ñFdsReadBinFile()ò

ï ñFdsReadKeyedRecord()ò
ï ñFdsReadSeqRecord()ò
ï ñFdsReleaseKeyedRecord()ò
ï ñFdsReturnSeqFilePos()ò
ï ñFdsSeekBinFilePos()ò
ï ñFdsSeekSeqFilePos()ò
ï ñFdsSetBinFileLocks()ò
ï ñFdsSetBinFileSize()ò
ï ñFdsWriteBinFile()ò
ï ñFdsWriteKeyedRecord()ò
ï ñFdsWriteSeqRecord()ò

¶ ñFdsWriteQ()ò was called and the queue was opened with a
role that has moved and FDS_CONFIRM_ROLE was specified.

-540 FDSERR_ROLE_NAME

Explanation: A role name that is not valid was specified. One of the

following conditions could have caused the error:

¶ The string is too long.

¶ The string is not null terminated.

¶ The string does not match the form <name::> where name is1to8

characters, and the less-than and greater-than characters (< and >)

and a double colon (::) are required characters.

¶ The string begins with the prefix FDS.

¶ The string contains more than two colons at the end of the role name.

These APIs are associated with this error:

- ñFdsCreateDir()ò

- ñFdsCreateKeyedFile()ò

- ñFdsDeleteFile()ò

- ñFdsExistFile()ò

- ñFdsGetFileAttributes()ò

- ñFdsOpenBinFile()ò

- ñFdsOpenKeyedFile()ò

- ñFdsOpenQ()ò

- ñFdsOpenSeqFile()ò

- ñFdsQueryFileSystemInfo()ò

- ñFdsRemoveDir()ò

- ñFdsRenameFile()ò

- ñFdsResolveRoleNm()ò

- ñFdsRestrictFile()ò

- ñFdsSetFileAttributes()ò

- ñFdsSetResetRole()ò

- ñFdsUnrestrictFile()ò

- ñFdsVerifyRole()ò

-550 FDSERR_ROLE_NOT_FOUND
Explanation: The role is not active or could not be found. Specific

conditions for this error include:

¶ The role is not active on any node in the system. These APIs are
associated with this error:
ï ñFdsCreateDir()ò
ï ñFdsCreateKeyedFile()ò
ï ñFdsDeleteFile()ò
ï ñFdsExistFile()ò
ï ñFdsGetFileAttributes()ò
ï ñFdsGetNodes()ò
ï ñFdsOpenBinFile()ò
ï ñFdsOpenKeyedFile()ò
ï ñFdsOpenQ()ò
ï ñFdsOpenSeqFile()ò
ï ñFdsQueryFileSystemInfo()ò
ï ñFdsRemoveDir()ò
ï ñFdsRenameFile()ò
ï ñFdsRestrictFile()ò
ï ñFdsSetFileAttributes()ò
ï ñFdsUnrestrictFile()ò

¶ ñFdsSetResetRole()ò was called and the role is not active on
the local node (returned only if FDS_RESET_ROLE is specified).

¶ ñFdsVerifyRole()ò was called and the role is not active on
the local node.

¶ ñFdsResolveRoleNm()ò was called; the role is not active on
the local node and FDS_CACHE_ONLY is specified, or the role is not
active on any node within the system.

-555 FDSERR_SCOPE
Explanation: A scope that is not valid was specified to
ñFdsSetDistribution()ò.

-558 FDSERR_SEEK_TYPE
Explanation: The specified parameter is not valid. Specific conditions for
this error include:

¶ The value provided for the Origin parameter is not valid. You must provide
one of the following values:

ï FDS_FILE_START_OF_FILE
ï FDS_FILE_CURRENT_POS
ï FDS_FILE_END_OF_FILE
The Origin parameter is used with these APIs:
ï ñFdsReadBinFile()ò
ï ñFdsSeekBinFilePos()ò
ï ñFdsWriteBinFile()ò

¶ The value provided for the SeekMethod parameter is not valid. You must
provide one of the following values:
ï FDS_CACHE_ONLY
ï FDS_NETWORK_ONLY
ï FDS_CACHE_FIRST
The SeekMethod parameter is used with ñFdsResolveRoleNm()ò .

-560 FDSERR_SEQUENCE
Explanation: An operation occurred out of sequence. Specific conditions
for this error include:

¶ ñFdsInit()ò or ñFdsInit2()ò has already been called
successfully by this process or is currently being called by another thread
in this process.

¶ ñFdsReadKeyedRecord()ò was called and the record is
already locked (returned only if FDS_FILE_RECORD_LOCK_YES is
specified).

¶ ñFdsReleaseKeyedRecord()ò was called and the record is not
locked.

¶ ñFdsWriteKeyedRecord()ò was called and the record is not
locked (returned only if FDS_FILE_RECORD_UNLOCK_YES is
specified).

¶ ñFdsSetDistribution()ò was called and the path name is
contained in a directory that is already distributed, or it is a directory that
contains a file which is already distributed.

¶ ñFdsActivateAsPrimary()ò was called and an activation or
deactivation of the primary distributor is already in progress.

¶ ñFdsDeactivatePrimary()ò was called and an activation or
deactivation of the primary distributor is already in progress.

¶ ñFdsCreateSyncID()ò was called and an attempt is being
made to create a synchronization ID without having previously performed
a distributed file operation against the file. Most file operations performed
on DOU files are distributed, but only some operations performed on
DOC files are distributed.

-570 FDSERR_SYNCID
Explanation: A synchronization ID that is not valid was specified to
ñFdsSetupSyncIDNotify()ò.

-575 FDSERR_THREAD_LIMIT
Explanation: This request could not be completed because too many
application threads currently have incomplete API calls to DDS. The calling
application might pause and then try the API call again. If this problem persists,
the number of application threads that can concurrently call DDS APIs should be
reduced. This error could be associated with any DDS API.

-580 FDSERR_TIMEOUT
Explanation: The request could not be completed within the specified time
limit. These APIs are associated with this error:

¶ ñFdsGetNodes()ò

¶ ñFdsOpenQ()ò

¶ ñFdsReadQ()ò

¶ ñFdsWriteQ()ò

Appendix C. Operating-System Error Codes
The File System Interface component must return standard, operating-system

error codes for errors resulting from file-system operations. These error codes are

returned from file system APIs such as:

¶ CreateFile() on Windows NT or Windows 2000

¶ WriteFile() on Windows NT or Windows 2000

¶ ReadFile() on Windows NT or Windows 2000

For normal file-system errors, the File System Interface component returns the

error code that it receives from the underlying, operating-system file system. The

error-code descriptions provided by the operating system include the information

necessary for diagnosing the cause of these errors.

However, in some cases, the File System Interface component returns operating

system error codes for problems unique to DDS. This chapter lists the operating-

system error codes that can be returned in these situations, and explains the

problems that will cause one of these errors to be returned. Because these

situations are unique to the File System Interface component of DDS, the errors

described in this section can only occur durng I/O operations against files stored

on controlled drives. See the IBM Distributed Data Services/Controller Services

Feature for Windows Installation and Configuration Guide for more information

about controlled drives.

Error Codes from Windows NT or Windows 2000
This section contains a list of error codes in decimal numeric order.

5 ERROR_ACCESS_DENIED

Explanation: Only the prime copy of a distributed file, or files in

distributed subdirectories, can be modified. Image copies of distributed

files can only be read. This error is returned under the following

conditions:

¶ On any attempt to modify an image copy of a file that has been

opened on the acting primary distributor when it is no longer the

acting primary distributor (after it has been deactivated)

¶ On any attempt to modify an image copy of a file or subdirectory

using a name-based API (for example, deleting a file, removing a

directory, or changing extended attributes)

¶ On any attempt to remove a directory or create a file or

directory in an image copy of a distributed directory

¶ On an open of an image copy with an access mode of

read/write or write-only

Services APIs map this error to The DDS File FDSERR_ACCESS. See ñ-

10 FDSERR_ACCESSò for more information.

6 ERROR_INVALID_HANDLE
Explanation: All distributed files opened for write access should be
closed before DDS is stopped or the acting primary distributor is
deactivated. If a file is not closed, this error might be returned the next
time the file handle is used.

This error is also returned if a write is attempted to the prime copy of a
distributed file after the acting primary distributor has been deactivated.
When this error is received, the file should be closed and then reopened
after DDS has been restarted or the primary distributor has been
activated.

21 ERROR_NOT_READY

Explanation: This error occurs during all attempts to modify any file on

a controlled drive when DDS is not running; the File System Interface

component cannot access the information required to determine if a file

is distributed unless DDS is running. Attempts to open a file with an

access mode of read/write or write-only also result in this error, even

though the open operation itself does not cause the file to be modified.

Once DDS has been started, this error will be returned if an attempt is

made to modify a distributed file or a file in a distributed subdirectory,

when data distribution has not yet completed initialization.

The DDS File Services APIs map this error to FDSERR_DOWN. {ŜŜ ά-150

C5{9wwψ5h²bέ ŦƻǊ ƳƻǊŜ ƛƴŦƻrmation.

