
QVS SOFTWARE, INC.

Mobile Point of Sale

Developer’s Guide

Volume

2

M O B I L E P O I N T O F S A L E

Developer’s Guide

 2002 QVS Software, Inc.
5711 Six Forks Rd. • Suite 300

Phone 919.676.1991 • Fax 919.676.1992

ii

Revision History

Document
Number

Date

Author

Comments

3/30/2005 Donn Machak Updated Documentation per review.

3/23/2005 Donn Machak Updated Documentation for 4.0 Release

3/19/2001 Jon Akhtar Initial version

Table of Contents

Revision History ii

“The Problem with Retailers” 1

The Problem 1

The Solution 1

Introduction to the MPOS Object Model 2

System Components 2

The MPOS Application 3

The Communications Manager 3

The Customization Plug-in

(Configuration) 3

The Printer Plug-in 3

The MSR Plug-in 3

The Cash Drawer Plug-in 3

The GenericDriver Object 4

GetDriverVersionString 5

Notify 5

The Configuration Object 6

LocalInit 7

PrintHook 9

DisplayHook 11

VDisplayHook 12

ErrorHook 13

StatusHook 14

MSRHook 15

ScanHook 16

FcodeHook 17

FieldLevelInputEvent2Hook 18

The Application Object 19

SetTitle 20

GetCurrState 20

GetPrevState 20

SetTerminalID 21

GetTerminalID 21

Terminate 21

SetLockDown 22

AllowDeviceSleep 22

PowerOff 22

SetAutoReceiptClear 23

GetScannerHandle 23

GetDeviceModel 23

GetPluginName 24

GetLayout 24

GetPrevLayout 25

GetView 25

RefreshAll 25

SetLayout 26

SetView 26

GetAppPath 26

DoScanCommand 27

SendKey 27

ScanDisable 27

ScanEnable 28

GetDisplay 28

SetDisplaySource 28

SetRFOutOfRange 29

MessageBox 29

The RPA Object 30

SendKey 31

SendScan 31

SendMSR 32

GetManagerKey 32

SetManagerKey 33

GetStateAlpha 33

SetStateAlpha 34

SetPrinter 34

SetDocumentInsert 35

GetScannerLock 35

GetKeyboardLock 35

GetMSRLock 36

GetTerminalID 36

SetFldLvlInput 36

EnableVDisplay 36

The Receipt Object 37

Clear 38

PrintLine 39

PrintLine 39

GetLine 40

InsertCut 40

InsertLogo 40

InsertDI 41

InsertBarcode 42

InsertCashdrawer 42

SendToPrinter 42

The Display Object 43

SetText 44

GetText 44

GetTextRect 45

GetTextAttrRect 45

SetDisplaySize 46

GetDisplaySize 46

SetViewport 47

GetViewportSize 47

PutText 48

PutTextWithAttributes 48

ClearBuffer 49

ClearViewport 49

SetLogFont 49

The Printer Object 50

BeginReceipt 51

PrintLine 51

PrintBarcode 52

PrintLogo 52

EndReceipt 53

HasDI 53

HasSJ 53

HasCut 54

SetDIOpen 54

CutReceipt 54

PrintInverted 55

WantsESC 55

The MSR Object 56

Start 57

End 57

Pause 58

Resume 58

The CashDrawer Object 59

Open 60

IsOpen 60

D E V E L O P E R ’ S G U I D E

1

“The Problem with Retailers”

The MPOS system has been designed with the need of retailers in mind, however not all retailers are alike.

ost retailers have over time created a highly customized POS solution ideally suited for their business
needs. It follows then that these same retailers will want any mobile solution that they implement to
be equally customized to meet those same needs. The MPOS application allows for customizations
on a per-client basis, while providing basic user-interface and device management features. This

frees the developer to write only the code necessary to implement the special features required by an individual
client

The Problem

Consider the example of 2 imaginary retailers Retailer A and Retailer B. Retailer A would like
the MPOS solution to track the number of credit transactions performed by logging each to
a SQL database. Retailer B does not have a SQL server, and does not need to track credit

transactions. Retailer B does want to add an extra line to the receipt to indicate that the transaction was
performed on the MPOS system. Of course, Retailer A does not want any extra lines added the receipt. With a
standard solution the answer would be to add these features into the MPOS application and turn on only the
features that each retailer wants. This is a fine idea, but what about retailers C-Z? As the number of customers
becomes large, the application would become laden with “special” features that most customers would not use.

The Solution

In order to satisfy both Retailer A and Retailer B, and keep the application manageable, the
developer can utilize the MPOS Customization API to augment the functionality of the
MPOS application. For Retailer A the developer uses ADOCE to access a remote SQL

server on the retailer’s ISP, and logs transaction data at the end of each credit transaction. For Retailer B the
developer adds a line “*** MPOS ***” to the end of each receipt. Both retailers’ needs can be met without
modifying the MPOS application at all.

Chapter

1

M

D E V E L O P E R ’ S G U I D E

 2

Introduction to the MPOS Object

Model

The MPOS system has been designed to allow for maximum flexibility of implementation.
The following is a high level overview designed to prepare you to develop your own customized
solutions.

he MPOS object model provides a simple way to change the basic functionality of the MPOS
application to meet the specific requirements of the client.

System Components

Figure 1 illustrates the primary components of the MPOS system.

Communication

Manager

Customization

Plug-in

MPOS Application

Printer Plug-in
Cash Drawer

Plug-in
MSR Plug-in

Figure 1 – System Component Block Diagram

Chapter

2

T

D E V E L O P E R ’ S G U I D E

 3

The MPOS Application

The primary component, the MPOS application provides the user interface and default behavior for the system.
It is contained wholly within the file PPOS_CE.EXE.

The Communications Manager

The Communications Manager handles all communications between the handheld and the 4690 Sales
Application running on the Terminal Concentrator. It is contained wholly within the file RPAMFUNCCE.DLL

The Customization Plug-in (Configuration)

The customization plug-in is specific to a particular customer’s implementation of the MPOS system. Writing a
customized configuration plug-in is the most common task when developing for a new client. Normally the
main areas that need coding are the LocalInit() method and the PrinterHook().

The Printer Plug-in

The printer plug-in is specific to a particular device. The MPOS application contains a default plug-in which
provides support for running without a printer.

The MSR Plug-in

The MSR plug-in is specific to a particular device. The MPOS application contains a default plug-in which
provides support for running without an MSR.

The Cash Drawer Plug-in

The Cash Drawer Plug-in is specific to a particular device. The MPOS application contains a default plug-in
which provides support for running without a cash drawer.

D E V E L O P E R ’ S G U I D E

 4

The GenericDriver Object

The GenericDriver interface provides base methods for each device driver object in the MPOS environment.

he GenericDriver interface is inherited by the Configuration, Printer, CashDrawer, and MSR device
driver classes. Each of these objects have their own unique methods described in chapters following
this common base class. To override the default functionality of the MPOS application the developer
will inherit from the GenericDriver class and override one or more of the GenericDriver methods

within one or more of the device driver classes (Configuration, Printer, CashDrawer, and MSR).

Chapter

3

T

D E V E L O P E R ’ S G U I D E

 5

GetDriverVersionString

Prototype:

virtual const TCHAR* GetDriverVersionString()

Remarks:

This method is called to obtain the current version string of the device driver being used.

Notify

Prototype:

virtual void Notify(notify msg, long extra)

Parameters:

Msg Notify identifier representing the type of notification.

Will be one of the following:

notifyWakeup notifyScanLock

notifyScanUnlock notifyWindowActivate

notifyWindowDeactivate notifyBatteryLow

notifyBatteryNorm notifyBatteryCharging

notifyAlphaModeOn notifyAlphaModeOff

notifyPromptComplete notifyReceptPrinted

Extra Not used

Remarks:

This method is called when MPOS detects a change that requires the device driver components to be notified.
One of the more useful purposes of this method is to be used in the Configuration plugin to know when a
transaction receipt has been printed. And as you can see from the list of notifications above you will also know
when the alpha entry status has changed and other useful notifications.

D E V E L O P E R ’ S G U I D E

 6

The Configuration Object

For customizing the MPOS application the Customization interface provides the methods necessary to override
or augment the application’s functionality. It also provides the link to all other objects.

he Configuration allows the developer to override the default functionality of the MPOS application.
To do so the developer will inherit from the Configuration class and override one or more of the
“hook” methods. There is also a LocalInit() method that is called when the configuration plugin is
loaded. Access to the other objects is obtained through a pointer returned by one of the 7 protected

access functions, e.g. Application().

Chapter

4

T

D E V E L O P E R ’ S G U I D E

 7

LocalInit

Prototype:

virtual bool LocalInit()

Remarks:

This method is called when the application is first loaded. Application and terminal settings can be made at this
time.

Sample Code:

bool MyCfg::LocalInit()

{

 LOG_SETUP_EX("CConfigFSG::LocalInit");

 // We handle receipt clearing

 Application()->SetAutoReceiptClear(false);

 // Turn off application lockdown for testing

 Application()->SetLockDown(false);

 // Get our device type

 const TCHAR* m_tszDeviceType = Application()->GetDeviceModel();

 TCHAR* pszMatch = _tcsstr(m_tszDeviceType, _T("PPT8800"));

 m_bPPT8800Device = false;

 if (pszMatch != NULL)

 {

 m_bPPT8800Device = true; // PPT8800 device

 }

 // Get printer plug-in name

 m_tszDeviceType = Application()->GetPluginName(CApplication::pluginPrinter);

 pszMatch = _tcsstr(m_tszDeviceType, NAME_PRN_ZEBRA320);

 m_bPrinterZebra320 = false;

 if (pszMatch != NULL)

 {

 m_bPrinterZebra320 = true; // Zebra QL320 wireless printer being used

 }

 // We are a full screen POS application

 Rpa()->EnableVDisplay(); // Enable full screen support

 Display()->SetDisplaySize(80, 25); // 80 columns with 25 rows

 Application()->SetDisplaySource(CApplication::sourceVDisplay);

 // Model 3/4 printer support needed by the POS application

 Rpa()->SetPrinter(CRpa::printerMod34);

 return true;

}

D E V E L O P E R ’ S G U I D E

 8

StateHook

Prototype:

virtual bool StateHook(short sCurState,

 short sNewState)

Parameters:

sCurState The current state of the 4690 sales

application expressed as an short

integer 1-255

sNewState The new state of the 4690 sales

application expressed as an short

integer 1-255

Remarks:

When the 4690 sales application changes states, this method will be called. The default behavior is to find a
corresponding state in the keymap file and display the correct keys for that state. If this behavior is appropriate
then the function should return true otherwise it should return false.

Sample Code:

bool CMyCfg::StateHook(short sCurState, short sNewState,

 short sCurrGroup, short sNewGroup)

{

 // If we are entering the error state, don’t change

 // the keys, just put up a message

if (sNewState == 1)

{

 Display()->SetText(L“Error”);

 return false;

}

 // for all other states, process the keymap as usual

 return true;

}

D E V E L O P E R ’ S G U I D E

 9

PrintHook

Prototype:

virtual bool PrintHook(const TCHAR* lpszText,

 short sLF,

 CRpa::Stations sStation,

 unsigned long lCommand,

 unsigned long lFlags)

Parameters:

lpszText The text being printed

sLF The number of linefeeds following the printed text

sStation The print station to which the text is being sent.

Can be one of:

 CRpa::stationCR

 CRpa::stationDI

 CRpa::stationSJ

lCommand The command that is sent to the printer (Model 4

printer mode) Can be one of:

CRpa::cmdPrintLineStart CRpa::cmdPrintLineEnd

CRpa::cmdPrt15CPI CRpa::cmdPrt12CPI

CRpa::cmdPrt75CPI CRpa::cmdPrt75CPIDH

CRpa::cmdDocEject CRpa::cmdHomeHead

CRpa::cmdEmphPrint CRpa::cmdPaperCut

CRpa::cmdPrintLineData

lFlags The flags that are sent to the printer. (Model 4

printer mode) Currently the only possible value is

 CRpa:: flagLogoPrint

Remarks:

This hook is probably the most used of all the hooks when writing a customized configuration plugin. The
main reason it is used the most is the need to possibly print more than one receipt for a credit transaction. To
detect that multiple receipts are needed to be printed the user today needs to monitor the text printed and
determine from the content that more than one receipt will print. See the simplified code example below that is
not complete but shown to help explain the usage of the PrintHook().

D E V E L O P E R ’ S G U I D E

 10

Sample Code:

bool MyCfg::PrintHook()

{ // Bgn PrintHook

 bool bpReturn = true; // default is to return and tell MPOS to process

 LOG_SETUP_EX("CConfigFSG::PrintHook");

 if ((m_dwAutoPrint) &&

 (sStation == CRpa::stationCR))

 { // Bgn Autoprint

 //

 // Commands we want to see include the following:

 //

 // cmdPrintLineData

 // cmdPaperCut

 //

 switch (lCommand)

 { // Bgn switch lCommand

 case CRpa::cmdPrintLineData:

 if (multipleReceiptsNeeded(lpszText)) // Check print line

 sPaperCutCount += 1; // extra receipt to print.

 break;

 case CRpa::cmdPaperCut:

 --sPaperCutCount;

 break;

 } // End switch lCommand

 if (sPaperCutCount <= 0)

 {

 logprintf(LOG_DBG, "Receipt Print\n");

 bool rc = Receipt()->SendToPrinter(m_cPrinterIP);

 }

 } // End AutoPrint

 return bpReturn;

} // End printHook

D E V E L O P E R ’ S G U I D E

 11

DisplayHook

Prototype:

virtual bool DisplayHook(const TCHAR* lpszText)

Parameters:

lpszText The text being written to the display.

This is a 40 character string.

Remarks:

When the 4690 sales application writes to the 2x20 display, this method will be called. The default behavior is
write the display data to the operator display. If this behavior is appropriate then the function should return
true otherwise it should return false.

D E V E L O P E R ’ S G U I D E

 12

VDisplayHook

Prototype:

virtual bool VDisplayHook(long lRow,

 long lCol,

 long lLength,

 const TCHAR* lpszText,

 COLORREF *iTextArray,

 COLORREF *iBackArray)

Parameters:

lRow Row number to display text.

lCol Column number where the text display

starts.

lLength Length of the text to be displayed.

lpszText The text being written to the display.

iTextArray Attributes of the text being displayed.

iBackArray Attributes of the text background being

displayed.

Remarks:

When the 4690 sales application writes to the enhanced full screen, this method will be called. The default
behavior is write the display data to the full screen display. If this behavior is appropriate then the function
should return true otherwise it should return false.

D E V E L O P E R ’ S G U I D E

 13

ErrorHook

Prototype:

virtual bool ErrorHook(CRpa::Errors error)

Parameters:

error Indicates the error that is being

reported by the Communciations Manager.

Will be one of:

 CRpa::errorUnknown

 CRpa::errorConnectionLost

 CRpa::errorConnectionFailed

 CRpa::errorSessionFailed

 CRpa::errorAttemptingReconnect

Remarks:

D E V E L O P E R ’ S G U I D E

 14

StatusHook

Prototype:

virtual bool StatusHook(CRpa::Statuses status)

Parameters:

Status Indicates the status that is being reported by

the Communciations Manager.

Will be one of:

statusUnknown statusConnectionComplete

statusScannerLocked statusScannerUnlocked

statusKeyboardLocked statusKeyboardUnlocked

statusCashDrawer1Open statusCashDrawer2Open

statusConnectionResumed statusMSRLocked

statusMSRUnlocked statusManagerKeyOn

statusManagerKeyOff statusResyncStart

statusResyncComplete statusCtrlrOffline

statusCtrlrOnline

Remarks:

When any of the status’ listed above occurs this method will be called. The user should almost always return
true from this routine because the base MPOS code performs numerous tasks when a status changes, e.g.
turning the MSR status green when the MSR is enabled.

Sample Code:

bool CMyCfg::StatusHook(CRpa::Statuses status)

{

 switch (status)

 {

 case CRpa::statusMSRUnlocked:

 bMSREnabled = true;

 break;

 case CRpa::statusMSRLocked:

 bMSREnabled = false;

 break;

 default:

 break;

 }

 return true; // perform normal handling

}

D E V E L O P E R ’ S G U I D E

 15

MSRHook

Prototype:

virtual bool MSRHook(const CMsrData* pData)

Parameters:

pData Pointer to a CMsrData object which

contains the information read from the

card.

Remarks:

When a card is successfully read, the MSR plug-in will fire an MSREvent that will provide the data from the
card in a CMSRData object. The default processing is to send the card data to the 4690 sales application. If this
behavior is desired, the function should return true, otherwise it should return false.

Sample Code:

bool CMyCfg::MSRHook(const CMsrData* pData)

{

 // If the first byte of the track 1 data is “7” then

 // it is a manager key card, so turn on the manager key, but don’t

 // send the card data to the sales application

 if (pData->GetTrack(1)[0] == “7”)

 {

 Rpa()->SetManagerKey(true);

 return false;

}

 else

 return true;

}

D E V E L O P E R ’ S G U I D E

 16

ScanHook

Prototype:

virtual bool ScanHook(CRpa::Labeltypes type, const TCHAR* lpszData)

Parameters:

Type Indicates the type of barcode label that

was scanned.

Will be one of the following:

 labeltypeUnknown

 labeltypeUPC_E1

 labeltypeUPC_E0

 labeltypeUPC_A

 labeltypeEAN8

 labeltypeEAN13

 labeltypeCodabar

 labeltypeMSI

 labeltypeCode39

 labeltypeD2of5

 labeltypeI2of5

 labeltypeCode11

 labeltypeCode93

 labeltypeCode128

 labeltypeCode32

 labeltypeIATA2of5

 labeltypeEAN128

lpszData Pointer to the barcode data scanned.

Remarks:

When a user scans a barcode this routine will get called. The default processing is to send the scan data to the
4690 sales application. If this behavior is desired, the function should return true, otherwise it should return
false.

This are is where a user can have unique barcodes scanned to perform specific non-POS tasks. An example
would be that a developer may want to enable or disable certain features in their test environment and one way
they can accomplish that is by scanning a unique barcode that is interpreted via this hook. Be careful that you
always return true for normal POS transaction processing.

D E V E L O P E R ’ S G U I D E

 17

FcodeHook

Prototype:

virtual bool FcodeHook(short sFcode)

Parameters:

sFcode The keyboard function code that is going

to be sent to the 4690 Sales

Application.

Remarks:

This method is called just before the keyboard function code is sent to the 4690 Sales Application. The default
behavior is to send any function code less than 255. If this behavior is desired then this method should return
true, otherwise it should return false to prevent the function code from being sent.

Sample Code:

bool CMyCfg::FcodeHook(short sFcode)

{

 bool bReturn = true; // default is to let MPOS process the key

 // Filter out function code 200, and just display

 // a message – don’t pass it on to the sales appl.

 if (sFcode == 200)

{

 Display()->SetText(L”Found”);

 bReturn = false; // Don’t send to sales application

}

// Turn alpha entry off so CLEAR key gets through

// In this example the CLEAR key is defined as 73 (x49)

 if (sCurrState == STATE_CLEAR &&

 sFcode == KEY_CLEAR &&

 Rpa()->GetStateAlpha())

 {

 Rpa()->SetStateAlpha(0);

 }

 return bReturn;

}

D E V E L O P E R ’ S G U I D E

 18

FieldLevelInputEvent2Hook

Prototype:

virtual bool FieldLevelInputEvent2Hook(long lMaxLen,

 long lEchoInput,

 long lFirstDisplayCol,

 long lLastDisplayCol,

 long lStateNum,

 BOOL bAlphaEntry,

 long lTransitionFlag)

Parameters:

lMaxlen Maximum length of input.

lEchoInput Is input echoed or not. Zero says no.

lFirstDisplayCol The first column where input is

displayed.

lLastDisplayCol Last column where input is displayed.

lStateNum Current POS application state number.

bAlphaEntry Alpha entry enabled or disabled.

lTransitionFlag Was this event caused by a state

transition or not.

Remarks:

This method is only useful for a POS application that uses the enhanced full screen feature. It is useful in the
full screen applications in allowing the programmer to know where the focus of data input is in case the
programmer needs to highlight fields.

D E V E L O P E R ’ S G U I D E

 19

 The Application Object

The application object provides met6hods to allow the developer to modify MPOS application functionality.

Chapter

5

D E V E L O P E R ’ S G U I D E

 20

SetTitle

Prototype:

virtual void SetTitle(const TCHAR* lpszTitle)

Parameters:

lpszTitle String containing the new application

title

Remarks:

Call this function to set the text on the title bar of the MPOS application.

GetCurrState

Prototype:

virtual short GetCurrState()

Remarks:

Returns the current input state of the 4690 sales application.

GetPrevState

Prototype:

virtual short GetPrevState()

Remarks:

Returns the previous input state of the 4690 sales application.

D E V E L O P E R ’ S G U I D E

 21

SetTerminalID

Prototype:

virtual void SetTerminalID(short sTermID)

Parameters:

STermID The new terminal ID

Remarks:

Sets the terminal ID to be used the next time the MPOS application connects to the terminal concentrator.

This method should be used in the Init method of the configuration object but is normally assigned via the
MPOS application.

The default value is the last octet of the IP address modulo 100.

GetTerminalID

Prototype:

virtual short GetTerminalID()

Remarks:

Gets the terminal ID of the active session. This may differ from the terminal ID returned from the application
object.

Terminate

Prototype:

virtual void Terminate()

Remarks:

Terminate the MPOS application.

D E V E L O P E R ’ S G U I D E

 22

SetLockDown

Prototype:

virtual void SetLockDown(bool bLockDown)

Parameters:

bLockDown The new value for this property.

Remarks:

The application can be “locked down” to prevent users from running other programs. When the application is
locked down, there will be no start menu or Ok button.

The default value is true.

AllowDeviceSleep

Prototype:

virtual void AllowDeviceSleep(bool bAllowSleep)

Parameters:

bAllowSleep The new value for the property

Remarks:

Set this to allow/disallow the device to enter sleep mode.

The default value is true

PowerOff

Prototype:

void PowerOff()

Remarks:

Power the device off.

D E V E L O P E R ’ S G U I D E

 23

SetAutoReceiptClear

Prototype:

virtual void SetAutoReceiptClear(bool bAutoClear)

Parameters:

BAutoClear The new value for the AutoReceiptClear

property

Remarks:

The MPOS application will automatically clear the onscreen receipt when it successfully completes a print
request. This feature may be enabled or disabled by using this method.

The default value is true.

GetScannerHandle

Prototype:

virtual unsigned long GetScannerHandle()

Remarks:

Returns the handle for the scanner.

GetDeviceModel

Prototype:

const TCHAR* GetDeviceModel()

Remarks:

Returns the assigned name for the current handheld device. An example would be that the 8146 device will
return a name that contains the string PPT8800 in it. This is useful if you are running your customized
configuration plugin on more than one device and need to perform certain code based on the type of device
you are running. This does away with the need to have “#ifdef” code in your source. You could set a flag to
identify the device type and execute code based off of the flag.

D E V E L O P E R ’ S G U I D E

 24

GetPluginName

Prototype:

const TCHAR* GetPluginName(plugins p)

Parameters:

p The plugin whose name is being

requested.

Must be one of:

 pluginConfiguration

 pluginPrinter

 pluginMSR

 pluginCashDrawer

 pluginSigCap

Remarks:

Returns the name of the specified plugin. This is useful if different behavior is required for different hardware
configurations.

GetLayout

Prototype:

const TCHAR* GetLayout()

Remarks:

Returns the layout name that is currently in effect. The layout name is defined in the XML configuration file
(also called the keymap file).

D E V E L O P E R ’ S G U I D E

 25

GetPrevLayout

Prototype:

const TCHAR* GetPrevLayout()

Remarks:

Returns the previous layout name that was in effect before the current layout. The layout name is defined in
the XML configuration file (also called the keymap file).

GetView

Prototype:

const TCHAR* GetView()

Remarks:

Returns the current view name that is in effect. The view name is defined in the XML configuration file (also
called the keymap file).

RefreshAll

Prototype:

virtual void RefreshAll()

Remarks:

Refreshes the current layout and view.

D E V E L O P E R ’ S G U I D E

 26

SetLayout

Prototype:

virtual void SetLayout(const TCHAR*strLayoutID, const TCHAR* strViewID)

Parameters:

strLayoutID Layout name.

strViewID View name.

Remarks:

Sets the current view and layout as defined in the passed parameters. The layout name and view name is
defined in the XML configuration file (also called the keymap file).

SetView

Prototype:

virtual void SetView(const TCHAR* strViewID)

Parameters:

strViewID View name.

Remarks:

Sets the current view as defined in the passed parameters. The layout name and view name is defined in the
XML configuration file (also called the keymap file).

GetAppPath

Prototype:

const TCHAR* GetAppPath()

Remarks:

Returns the path of where the MPOS application is currently running from.

D E V E L O P E R ’ S G U I D E

 27

DoScanCommand

Prototype:

virtual void DoScanCommand(const TCHAR* lpszCommand)

Parameters:

lpszCommand Scan command for MPOS to process.

Remarks:

Tells MPOS to process the scan command as if the data were scanned in from a barcode. An example would
be to send the string “MPOSExit” to tell MPOS to exit.

SendKey

Prototype:

virtual long SendKey(short sFcode)

Parameters:

sFcode The function code to send to the 4690

sales application

Remarks:

Use this method to send a function code to the POS application. Value can be from 1 to 255 and should be a
valid function code that the POS application knows about.

ScanDisable

Prototype:

virtual void ScanDisable()

Remarks:

Use this method to disable the scanner.

D E V E L O P E R ’ S G U I D E

 28

ScanEnable

Prototype:

virtual void ScanEnable()

Remarks:

Use this method to enable the scanner.

GetDisplay

Prototype:

virtual CDisplay* GetDisplay(const TCHAR* lpszDisplayName)

Parameters:

lpszDisplayName NULL or the name of the CDisplay object

wanted.

Remarks:

Returns a pointer to the CDisplay object requested.

SetDisplaySource

Prototype:

virtual void SetDisplaySource(source s)

Parameters:

s The display source.

Can be:

 sourceOperatorDisplay (2x20)

 sourceVDisplay (full screen)

Remarks:

Use this method to set the display source properly. This will be executed in the LocalInit() call of the
customized configuration plugin. See the LocalInit() sample code for usage.

The default value is set to sourceOperatorDisplay (2x20 POS application).

D E V E L O P E R ’ S G U I D E

 29

SetRFOutOfRange

Prototype:

virtual void SetRFOutOfRange(long lThreshold)

Parameters:

lThreshold Set the value to be used by MPOS for

when it is determined that the hand held

device is out of range to the access

point. Valid value is 1 to 100.

Remarks:

Use this method to change the default value for when MPOS will determine that the hand held device is out of
range to the access point.

The default value is set to 20.

MessageBox

Prototype:

int MessageBox(const TCHAR* lpszPrompt, UINT nType)

Parameters:

lpszPrompt Text to be prompted in the message box.

nType Type of message box to be prompted.

Remarks:

Returns the value determined from the message box routine.

D E V E L O P E R ’ S G U I D E

 30

The RPA Object

The RPA object provides methods to control the terminal client aspect of the application. It is the primary
interface with the 4690 sales application.

Chapter

6

D E V E L O P E R ’ S G U I D E

 31

SendKey

Prototype:

virtual long SendKey(short sFcode)

Parameters:

sFcode The function code to send to the 4690

sales application

Remarks:

Use this method to send a function code to the POS application. Value can be from 1 to 255 and should be a
valid function code that the POS application knows about.

SendScan

Prototype:

virtual long SendScan(Labeltypes ScanType, const TCHAR* lpszData)

Parameters:

ScanType The barcode type.

Must be one of:

lpszData The scan data

Remarks:

This method is normally used via the ScanHook() and is needed to sometimes override scan data sent to the
POS application by MPOS. There have been instances where the scanner will send in a certain barcode type
that the POS application does not support. The ScanHook() allows the programmer to interpret the scan that
just happened and possibly change the barcode type and or data so that it is accepted properly by the POS
application.

D E V E L O P E R ’ S G U I D E

 32

SendMSR

Prototype:

virtual long SendMSR(const char* lpszTk1, const char* lpszTk2, const char*

lpszTk3)

Parameters:

lpszTk1 The track 1 data

lpszTk2 The track 2 data

lpszTk3 The track 3 data

Remarks:

Use this method to override MSR data that is sent by MPOS. MPOS will send in all the proper MSR data to
the POS application but in some instances a user may want to override the MSR data and only send in certain
track data to the POS application.

GetManagerKey

Prototype:

virtual bool GetManagerKey()

Remarks:

Gets the status of the manager key. True returned if the manager key status is on else returns false if the
manager key is turned off.

D E V E L O P E R ’ S G U I D E

 33

SetManagerKey

Prototype:

virtual void SetManagerKey(bool bNewValue)

Parameters:

bNewValue The new value for this property

Remarks:

Use this method to turn the manager key on or off. If the POS application requires the user to turn the
manager key on and off you would use this method along with possibly defining a key in your keymap file
(XML configuration file) that allows a user to simulate turning the manager key on or off. Or if your customer
allows you can always simply send in that the manager key is on so that no manager key required errors occur.

GetStateAlpha

Prototype:

short GetStateAlpha()

Remarks:

This method tells you if the current state is in alpha entry mode or not. A zero value says no alpha entry is
enabled while a return code value of 1 says that alpha entry is enabled for the current state.

D E V E L O P E R ’ S G U I D E

 34

SetStateAlpha

Prototype:

virtual void SetStateAlpha(short bNewAlphaValue)

Parameters:

bNewAlphaValue The new value for this property

Remarks:

Use this method to tell the POS application to enter or exit alpha entry mode.

A common area that this method is used for is when a user hits the CLEAR key and instead of the CLEAR key
being sent to the POS application the user sees an “I” displayed. Most applications have the function code 73
defined as the CLEAR key which is also the alpha letter “I” if alpha entry is supported by the POS application.
In this instance the user should probably intercept the function code being sent via the FcodeHook() and turn
alpha entry off if you want the CLEAR key to go through to the POS application rather than the letter “I.”

See the sample code in the FcodeHook() for reference.

SetPrinter

Prototype:

virtual void SetPrinter(Printertypes printer)

Parameters:

bNewValue Printer type.

Values can be:

 printerMod2

 printerMod34

Remarks:

Used to set what type of printer that the POS application is using.

D E V E L O P E R ’ S G U I D E

 35

SetDocumentInsert

Prototype:

virtual bool SetDocumentInsert(bool bNewValue)

Parameters:

bNewValue The new value for this property

Remarks:

Notifies the 4690 sales application of a change in that status of the document insert station.

GetScannerLock

Prototype:

virtual bool GetScannerLock()

Remarks:

Gets the lock state of the scanner.

GetKeyboardLock

Prototype:

virtual bool GetKeyboardLock()

Remarks:

Gets the lock state of the keyboard.

D E V E L O P E R ’ S G U I D E

 36

GetMSRLock

Prototype:

virtual bool GetMSRLock()

Remarks:

Gets the lock state of the MSR.

GetTerminalID

Prototype:

short GetTerminalID()

Remarks:

Gets the terminal ID of the active session. This may differ from the terminal ID returned from the application
object.

SetFldLvlInput

Prototype:

virtual void SetFldLvlInput(bool bFldLvl)

Remarks:

Use this method to enable or disable field level input.

EnableVDisplay

Prototype:

virtual void EnableVDisplay()

Remarks:

Use this method to enable VDisplay usage which means the POS application is using the enhanced full screen
display. See the LocalInit() sample code for usage.

D E V E L O P E R ’ S G U I D E

 37

The Receipt Object

The receipt object provides the interface to the on-screen receipt.

Chapter

7

D E V E L O P E R ’ S G U I D E

 38

Clear

Prototype:

virtual void Clear()

Remarks:

Clear the contents of the on-screen receipt and associated print buffers.

D E V E L O P E R ’ S G U I D E

 39

PrintLine

Prototype:

virtual void PrintLine(const TCHAR* lpszLine, CRpa::Stations station)

Parameters:

lpszLine The text to send to the receipt

station Station to output the text to print.

Values can be:

 stationCR

 stationSJ

 stationDI

Remarks:

Print a line to a receipt station.

PrintLine

Prototype:

virtual void PrintLine(const TCHAR* lpszLine,

 const TCHAR* lpszLineUI,

 CRpa::Stations station)

Parameters:

lpszLine The text to send to the receipt

lpszLineUI The text to send to the receipt object

online recipt view.

station Station to output the text to print.

Values can be:

 stationCR

 stationSJ

 stationDI

Remarks:

Print a line to a receipt station.

D E V E L O P E R ’ S G U I D E

 40

GetLine

Prototype:

virtual void GetLine(int nLine, TCHAR* lpszLine)

Parameters:

nLine The line number to get

lpszLine The buffer in which to store the string

Remarks:

Get a specific line on the receipt.

InsertCut

Prototype:

virtual void InsertCut()

Remarks:

Place a paper cut command after the last line.

InsertLogo

Prototype:

virtual void InsertLogo()

Remarks:

Place a logo command after the last line.

D E V E L O P E R ’ S G U I D E

 41

InsertDI

Prototype:

virtual void InsertDI(const TCHAR* lpszPrompt)

Parameters:

lpszPrompt The prompt to display to the user.

Remarks:

Use this method to store the document insert prompt. When the print actually occurs, the application will
display this prompt and wait for the user to press the CLEAR key before printing to the document insert
station.

Sample Code:

bool CMyCfg::DisplayHook(const TCHAR* lpszText,

 short sCurState,

 short sCurrGroup)

{

if (wcsncmp(lpszText, L"INSERT APPLICATION", 17) == 0)

{

Rpa()->SetDocumentInsert(true);

Rpa()->SendKey(fcodeClear);

if (Printer()->HasDI())

 Receipt()->InsertDI(lpszText);

 return false;

}

return true;

}

D E V E L O P E R ’ S G U I D E

 42

InsertBarcode

Prototype:

virtual void InsertBarcode(CRpa::Labeltypes type, TCHAR* lpszData)

Parameters:

Type Barcode type label.

lpszData Barcode data.

Remarks:

Use this method to store a barcode into the print receipt.

InsertCashdrawer

Prototype:

virtual void InsertCashdrawer(short sNum)

Parameters:

sNum Cash drawer number.

Remarks:

Use this method to store …

SendToPrinter

Prototype:

virtual void SendToPrinter(const char* lpszHost)

Parameters:

lpszHost A string that contains the host IP

address, or other information as

required by the printer plugin.

Remarks:

Print the sales receipt.

D E V E L O P E R ’ S G U I D E

 43

The Display Object

The display object provides the interface to the on-screen display of the MPOS application.

Chapter

8

D E V E L O P E R ’ S G U I D E

 44

SetText

Prototype:

virtual void SetText(TCHAR* lpszText)

Parameters:

lpszText The text to place on the display.

Remarks:

Based on the type of display being used this text length may vary.

GetText

Prototype:

virtual void GetText(TCHAR* lpszBuffer, int nLen)

Parameters:

lpszBuffer The buffer in which to place the

contents of the display. Should be a

buffer large enough to store 40

characters

nLen The size of the lpszBuffer

Remarks:

Returns the first nLen bytes of the display text.

D E V E L O P E R ’ S G U I D E

 45

GetTextRect

Prototype:

virtual void GetTextRect(TCHAR* lpszBuffer,

 int iLeft,

 int iTop,

 int iRight,

 int iBottom)

Parameters:

lpszBuffer The buffer in which to place the

contents of the display. Should be a

buffer large enough to store all

characters requested.

iLeft Top left column

iTop Top row

iRight Bottom right column

iBottom Bottom row

Remarks:

Returns the text based on the rectangle dimensions.

GetTextAttrRect

Prototype:

virtual void GetTextAttrRect(COLORREF* pBufferFore,

 COLORREF* pBufferBack,

 int iLeft,

 int iTop,

 int iRight,

 int iBottom)

Parameters:

pBufferFore Foreground attributes of text requested.

pBufferBack Background attributes of text requested.

iLeft Top left column

iTop Top row

iRight Bottom right column

iBottom Bottom row

Remarks:

Returns the text attributes based on the rectangle dimensions.

D E V E L O P E R ’ S G U I D E

 46

SetDisplaySize

Prototype:

virtual void SetDisplaySize(int x, int y)

Parameters:

X Number of columns (max 80)

Y Number of rows (max 25)

Remarks:

Used when the enhanced full screen display is written to by the POS application. This call will be made in the
LocalInit() method of the customized configuration plugin.

GetDisplaySize

Prototype:

SIZE GetDisplaySize()

Parameters:

SIZE Returns the size of the display that we

are using.

Remarks:

Used to determine our display size.

D E V E L O P E R ’ S G U I D E

 47

SetViewport

Prototype:

virtual void SetViewport(int iLeft, int iTop, int iRight, int iBottom)

Parameters:

iLeft Top left column

iTop Top row

iRight Bottom right column

iBottom Bottom row

Remarks:

Used when the enhanced full screen display is used and we want to show only a portion of the full display if our
device is of the ¼ VGA display size.

GetViewportSize

Prototype:

SIZE GetViewportSize()

Parameters:

SIZE Returns the size of the display that we

are using.

Remarks:

Used to determine the display size of the current viewport.

D E V E L O P E R ’ S G U I D E

 48

PutText

Prototype:

virtual void PutText(int row, int col, const TCHAR* lpszText)

Parameters:

Row Place the text on this row.

Col Place the text starting at this column.

Lpsztext Text to be displayed.

Remarks:

Used when the enhanced full screen display is written to by the POS application. Use this method to output
text to a certain row and column.

PutTextWithAttributes

Prototype:

virtual void PutTextWithAttributes(int row,

 int col,

 const TCHAR* lpszText,

 COLORREF* iTextArray,

 COLORREF* iBackArray)

Parameters:

Row Place the text on this row.

Col Place the text starting at this column.

Lpsztext Text to be displayed.

iTextArray Attributes to apply to the text.

iBackArray Attributes to apply to the background of

the text.

Remarks:

Used when the enhanced full screen display is written to by the POS application. Use this method to output
text to a certain row and column with attributes used.

D E V E L O P E R ’ S G U I D E

 49

ClearBuffer

Prototype:

virtual void ClearBuffer()

Remarks:

Used to clear the display buffer to blanks.

ClearViewport

Prototype:

virtual void ClearViewport()

Remarks:

Used to clear the current viewport in use to blanks.

SetLogFont

Prototype:

virtual void SetLogFont(const LOGFONT* pLogFont)

Parameters:

pLogFont Pointer to the log font to be used by

the display.

Remarks:

Used to set the log font to be used for the display.

D E V E L O P E R ’ S G U I D E

 50

The Printer Object

The printer object provides the interface to the physical print device

Chapter

9

D E V E L O P E R ’ S G U I D E

 51

BeginReceipt

Prototype:

virtual long BeginReceipt(const char* lpszHost)

Parameters:

lpszHost This would be the IP host address (IP

address, e.g. 111.222.333.444) of the

wireless printer being used.

Remarks:

This is the first method called when the SendToPrinter() method is called via the Receipt object.

PrintLine

Prototype:

virtual long PrintLine(char* lpszData, int nLen, Stations station)

Parameters:

lpszData Text receipt data to be printed.

station Station to print to which is normally

the customer receipt station.

Remarks:

This method is called for each print line executed by the POS application.

D E V E L O P E R ’ S G U I D E

 52

PrintBarcode

Prototype:

virtual long PrintBarcode(CRpa::Labeltypes type, const char* lpszData)

Parameters:

Type Barcode type to print.

Values can be one of the following:

labeltypeUPC_E1 labeltypeUPC_E0

labeltypeUPC_A labeltypeEAN8

labeltypeEAN13 labeltypeCodabar

labeltypeMSI labeltypeCod39

labeltypeD2of5 labeltypeI2of5

labeltypeCode11 labeltypeCode93

labeltypeCode128 labeltypeCode32

labeltypeIATA2of5 labeltypeEAN128

lpszData Barcode data to print.

Remarks:

This method is called to print barcodes.

PrintLogo

Prototype:

virtual long PrintLogo(bool bInit)

Parameters:

bInit This flag is used if the PrintLogo() is

the first call made and we want to issue

the BeginReceipt() call before the logo

is inserted.

Remarks:

This method is called to print a logo.

D E V E L O P E R ’ S G U I D E

 53

EndReceipt

Prototype:

virtual long EndReceipt()

Remarks:

This is the last method called when the SendToPrinter() method is called via the Receipt object.

HasDI

Prototype:

virtual bool HasDI()

Remarks:

This method tells MPOS if the attached MPOS printer has support for the document insert (DI) station or not.
If so, then all document insert data will be sent to the attached MPOS printer if needed.

Returns true if the printer supports DI prints else the printer driver returns false.

HasSJ

Prototype:

virtual bool HasSJ()

Remarks:

This method tells MPOS if the attached MPOS printer has support for the journal (SJ) station or not. If so,
then all journal data will be sent to the attached MPOS printer if needed.

Returns true if the printer supports SJ prints else the printer driver returns false.

D E V E L O P E R ’ S G U I D E

 54

HasCut

Prototype:

virtual bool HasCut()

Remarks:

This method tells MPOS if the attached MPOS printer has support for the CUT command or not. If so, then
all CUT commands will be sent to the attached MPOS printer if needed.

Returns true if the printer supports the CUT command else the printer driver returns false.

SetDIOpen

Prototype:

virtual long SetDIOpen(bool bIsOpen)

Parameters:

bIsOpen True if MPOS wants to open the DI

station to start printing to the DI.

False if the DI station is open and MPOS

wants to print to a different station.

Remarks:

This method tells the associated printer driver if MPOS wants to open or close the DI station for printing. This
method is only used if the printer driver has DI support (see HasDI() method).

CutReceipt

Prototype:

virtual long CutReceipt()

Remarks:

This method will cut the receipt if the attached printer says it supports cutting the receipt (see HasCut()
method). If no receipt cutting support is available then this call will not be made by MPOS.

D E V E L O P E R ’ S G U I D E

 55

PrintInverted

Prototype:

virtual long PrintInverted(bool bInvert)

Parameters:

bInvert True if MPOS wants the attached printer

to print the receipt inverted. False is

the default value.

Remarks:

This method tells the associated printer driver if MPOS wants the printer driver to print the text inverted. The
default value is to not print inverted.

WantsESC

Prototype:

virtual bool WantsESC()

Remarks:

This method is called to ask the attached printer driver if it supports and wants all the printer escape sequences
sent to it. These escape sequences would be the special printer commands sent to bold the text, print the text
in double height, etc.

D E V E L O P E R ’ S G U I D E

 56

The MSR Object

The MSR object provides the interface to the physical MSR device.

Chapter

10

D E V E L O P E R ’ S G U I D E

 57

Start

Prototype:

virtual bool Start()

Remarks:

Start the MSR device so that it can be used.

Returns true if the operation was successful or false if the MSR is already started.

End

Prototype:

virtual bool End()

Remarks:

Stop the MSR device from being used.

Returns true if the operation was successful.

D E V E L O P E R ’ S G U I D E

 58

Pause

Prototype:

virtual bool Pause()

Remarks:

Pause reading of the MSR

Returns true if the operation was successful.

Resume

Prototype:

virtual bool Resume()

Remarks:

Resume/start reading of the MSR

D E V E L O P E R ’ S G U I D E

 59

The CashDrawer Object

Cash drawer management is supplied by the MPOS application. If developers need to manage the cash
drawer directly, the cash drawer object provides the necessary interface with the device.

Chapter

11

D E V E L O P E R ’ S G U I D E

 60

Open

Prototype:

virtual void Open(int nDrawerNumber, const char* lpszHost = NULL)

Parameters:

nDrawerNumber The drawer that should be opened,

usually this is either 1 or 2.

lpszHost A string that contains the host IP

address, or other information as

required by the cashdrawer plugin.

Remarks:

If no plugin is installed this method will do nothing.

IsOpen

Prototype:

virtual bool IsOpen(int nDrawerNumber, const char* lpszHost = NULL)

Parameters:

nDrawerNumber The drawer that should be checked for an

open status, usually this is either 1 or

2.

lpszHost A string that contains the host IP

address, or other information as

required by the cashdrawer plugin.

Remarks:

This method returns true if the requested drawer is open else a false return is given.

If no plugin is installed this method will alternate between returning true and returning false.

